Design Around People. A Good Building Follows.

Blog

Read more about a range of building science, engineering, and architecture topics on our company blog.

The 5 Principles of a Healthy Home

By Positive Energy staff


This blog post will present a foundational framework for architectural practice, emphasizing the profound impact of building design decisions on human health and well-being. Moving beyond conventional priorities of aesthetics and initial construction costs, which are unfortunately all too common and mundane in our modern era, this post introduces and explores "5 Principles of a Healthy Home." These principles offer a holistic approach to achieving superior indoor environmental quality (IEQ) and long-term building durability. By understanding and integrating these foundational building science concepts, architects are empowered to design spaces that actively promote the health, cognitive function, and restorative sleep of occupants, thereby elevating their role to advocates for human thriving.


Architects as Advocates for Human Thriving

Beyond Aesthetics and First Cost

Historically, the evaluation of a "good" building has often been narrowly defined by its visual appeal and the initial financial outlay required for its construction. Terms such as "builder grade" and "developer driven" frequently signify projects where quality, particularly in residential settings, may be compromised in favor of sales volume and cost efficiency.1 This historical prioritization of "eyeballs, egos, and first cost" has inadvertently led to a systemic undervaluation of fundamental building science principles that directly influence both occupant health and the long-term durability of structures.1

This prevailing bias means that critical aspects like indoor air quality and structural resilience are often merely assumed to be adequate, rather than being meticulously designed and verified as are, let’s say, the integration of milled cabinetry in a kitchen. The consequence is a pervasive disconnect between market drivers and true building performance. For architects, this necessitates a proactive stance, challenging these entrenched norms and educating clients on the intrinsic value of healthy, durable design. This shift positions the architect not merely as a fulfiller of aesthetic and budgetary requirements, but as a crucial advocate for occupant well-being, embodying a deeper ethical responsibility to foster human thriving within the built environment.

Indoor Environments and Human Health 

The indoor environment is a primary determinant of human health, given that individuals spend approximately 87% of their lives indoors, with nearly 70% of that time within their residence and a significant 30% in their bedroom.1 Within these spaces, invisible threats such as particles, gas-phase pollutants, and bioaerosols are ubiquitous and often undetectable by human senses, yet they exert a profound influence on physiological and cognitive functions.1

This pervasive and often invisible nature of indoor air pollutants, coupled with the vast amount of time spent indoors, transforms the home from a mere shelter into a primary determinant of long-term human health. This influence extends to fundamental biological processes and daily functions. For instance, environmental exposures, including indoor air pollutants like fine particulate matter (PM2.5), have been shown to induce changes in gene expression within a single lifetime.1 This phenomenon, known as epigenetics, impacts prenatal gene regulation and can lead to negative health outcomes for future generations, a concern highlighted by the American Council of Obstetricians and Gynecologists.1 The implications are significant: the very air a pregnant mother breathes can introduce pollutants into the baby's bloodstream, affecting methylation and gene regulation.1

Beyond biological impacts, indoor air quality profoundly affects cognitive function. Research from institutions such as the Harvard T.H. Chan School of Public Health, particularly their CogFX study, demonstrates that better indoor air quality can sharpen decision-making, enhance cognitive abilities, and improve various metrics associated with decision-making, including basic and focused activity, task organization, crisis response, and information processing.1 Elevated carbon dioxide (CO2) levels, often a proxy for inadequate ventilation and increased pollutant concentrations, have been correlated with decreased cognitive performance.1

Furthermore, the quality of indoor air directly impacts sleep. Studies indicate a strong correlation between poor indoor air quality, specifically exposure to particulate matter and nitrogen dioxide, and increased sleep disturbances and decreased sleep efficiency.1 Considering that approximately 30% of an average human life is spent in the bedroom, this "sleep zone" becomes a critical microenvironment for exposure science, demanding careful consideration of what is present in the air, bedding, and surrounding materials.1 The cumulative effect of these influences elevates the architect's role to that of a public health professional, designing not just spaces, but tangible health interventions.


The 5 Principles of a Healthy Home

The following five principles, distilled from peer-reviewed medical and environmental chemistry research, provide a robust framework for designing homes that prioritize occupant health and well-being.


Principle 1: Start with a Good Building Enclosure

Defining the Enclosure and its Foundational Role

A "good" building enclosure is functional, durable, and reliable, performing its intended purpose over a long lifespan.1 It serves as the primary environmental separator, defining the conditioned space and mediating the interaction between the indoor and outdoor environments.1 This six-sided box, comprising the foundation, walls, and roof, is the critical element that creates the "indoors".1 Its design, including massing, shape, orientation, and the placement of apertures, has a lasting impact on the building's performance.1 The enclosure is a passive, durable, and functional assembly, representing a singular opportunity to achieve correct installation, as rectifying issues later can be inconvenient and costly.1

The enclosure plays a vital role in indoor environmental quality in several ways. Firstly, it defines the breathing zone of the conditioned space, directly influencing the volume and quality of air occupants inhale.1 Secondly, it mediates moisture transport processes, either preventing or allowing water ingress from rain, groundwater, air-transported moisture, or diffusion through materials.1 This control is paramount for preventing dampness and subsequent issues like mold growth. Thirdly, the very materials chosen for the enclosure can be a permanent source of toxic air pollutants, highlighting the need for careful material selection.1

Mediating Moisture Transport: The 3 Ds and Control Layers

Effective moisture control within the building envelope is critical, as water is a universal solvent capable of degrading building materials and fostering biological growth.1 Building science principles emphasize the "3 Ds" for water management: Deflect, Drain, and Dry.10

  • Deflect: This involves preventing water from entering the building in the first place, primarily through the exterior cladding.10

  • Drain: A crucial safety net involves creating a drainage plane behind the cladding to direct any water that bypasses the deflection layer away from the wall assembly.10 This often involves a water-resistive barrier (WRB) that can also function as a drainage plane.10 Proper flashing details at windows, doors, and roof-to-wall intersections are essential to direct water "down and out" over the cladding or drainage plane.13 Kick-out flashings, for example, are critical to prevent water concentration at wall surfaces.13

  • Dry: Should any moisture penetrate the system, the assembly must have the capacity to dry out, either to the interior or exterior.10 Highly permeable materials for the WRB can facilitate this drying process by allowing moisture vapor to pass through the wall assembly.10

Beyond water barriers, the building envelope incorporates other control layers:

  • Air Barrier: This layer is paramount for energy efficiency and indoor air quality, as air leakage can transport unwanted heat, cool air, pollutants, odors, and, crucially, water vapor into the building cavity.10

  • Insulation Layer: Continuous insulation on the building's exterior significantly reduces heating and cooling needs, improving energy efficiency and occupant comfort.10 Thermal bridge elimination is also critical to prevent "cold corners" and minimize mold growth risk.15

  • Vapor Barrier: This layer manages water vapor diffusion, preventing condensation within the wall assembly at the dew point.10 The design should allow the wall assembly to dry if liquid water forms.10

The Critical Air Barrier: Preventing Uncontrolled Air and Moisture Movement

An effective air barrier is a cornerstone of a high-performance enclosure, essential for both durability and energy savings.15 It is a continuous system of interconnected materials, assemblies, and sealed joints that minimizes air leakage into or out of the building's thermal envelope.16 Codes, such as the International Energy Conservation Code (IECC) and ASHRAE Standard 90.1, mandate continuous air barriers for new commercial construction in certain climate zones.17

The air barrier's significance extends beyond energy efficiency. By preventing uncontrolled air movement, it mitigates the transport of water vapor, which can lead to moisture accumulation and material degradation within the wall cavity.10 Even with a robust water-resistive barrier, an air leak can introduce water vapor at a much higher rate than diffusion, causing internal damage.10 The air barrier must be impermeable, continuous, structurally supported, and durable.17 Its continuity is achieved by meticulously detailing transitions between different materials and assemblies, ensuring a seamless barrier across the entire building enclosure, including below-grade components.16 This meticulous design and installation, often guided by manufacturer instructions and prescriptive requirements, are critical for the long-term performance of the building.16

Material Selection and Avoiding Enclosure-Based Pollutants

The choice of materials for the building enclosure directly impacts indoor air quality, as many common construction products can be permanent sources of toxic air pollutants.1 This concern is particularly acute given the historical tendency to use occupants as "science experiments," introducing materials with unknown long-term health outcomes.1 For example, flame retardants, once commonly found in children's pajamas, are also present in spray foam insulation and various textiles used in buildings.1 These chemicals do not easily break down and can leach into dust, food, and water, posing risks such as endocrine and thyroid disruption, immunotoxicity, reproductive toxicity, and adverse effects on fetal and child development.18

Other hazardous chemicals found in building materials include formaldehyde, a known carcinogen present in pressed wood products, insulation, glues, and paints; chromated copper arsenate (CCA) in pressure-treated wood; lead in older paints and plumbing; polyvinyl chloride (PVC) in pipes, window frames, and flooring, which contains phthalates and dioxins linked to hormone disruption and cancer; and isocyanates in spray foam insulation.11 Crystalline silica, when pulverized during construction, can also lead to severe respiratory issues.11 These substances can lead to a range of health effects, from eye and respiratory irritation to neurological problems and cancer.11 Architects must advocate for the selection of low-emitting and non-toxic materials, understanding that the enclosure is not merely a structural element but a critical determinant of indoor chemical exposure.

Integrating Air Distribution Systems as Part of the "Enclosure"

While typically considered part of mechanical systems, the air distribution system of a home—its "lungs"—functions as a passive, durable, and highly functional component that should be treated with the same design rigor as the building enclosure itself.1 The common practice of using flex duct and duct board, often installed with "origami-like" distortions, leads to significant energy waste due to needless friction and fluid dynamic inefficiencies.1 This neglect, often driven by "low first cost" and an "out of sight, out of mind, out of budget" mentality, compromises the entire system's performance.1

The air distribution system is intimately connected to indoor air quality, as it is responsible for delivering conditioned air deep into occupants' lungs.1 The time it takes for air to move from the room to the alveoli in the lungs, where gas exchange occurs, is on the same timescale as the exchange from alveoli to blood.1 Therefore, the quality of air within the ducts directly impacts occupant health. Architects have a critical role in integrating the building's "lungs" into the architectural design, insisting on robust, well-designed systems, such as metal ductwork, that ensure proper air mixing and efficient pollutant removal.1 This involves thinking about fluid dynamics and collaborating with engineers to ensure that air enters the room with sufficient energy to entrain particles and gases, facilitating their capture by filters and promoting thermal and humidity comfort.1 This approach recognizes that the air distribution system is not an aesthetic inconvenience but a functional necessity for human thriving.


Principle 2: Minimize Indoor Pollutants/Emissions

Understanding Indoor Pollutants: Particles, Gases, and Bioaerosols

The "fishbowl strategy" of our indoor environments means we are immersed in air containing a complex mixture of pollutants, often without our awareness.1 These can be broadly categorized into three main types:

  • Particles: These include particulate matter (PM) of various sizes, such as coarse particles (PM10), fine particles (PM2.5), and ultrafine particles (PM0.1 or PM0.5).1 PM2.5, with a diameter of less than 2.5 micrometers, is particularly dangerous as it can penetrate deep into the lungs and enter the bloodstream, causing cardiovascular and respiratory diseases, neurodegenerative diseases, and cancers.3 These particles are often "candy-coated" with chemical gases, making them a rich chemical mixture.1

  • Gas-Phase Pollutants: This category includes volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs).1 VOCs are chemicals that easily vaporize at room temperature, releasing fumes into the air, and are found in thousands of household products and building materials.20 They can cause eye, nose, and throat irritation, headaches, dizziness, and damage to the liver, kidneys, and central nervous system, with some being suspected or known carcinogens.20 SVOCs can outgas for decades.1

  • Bioaerosols: This growing area of study encompasses a rich ecosystem of bacteria, viruses, protozoa, fungal spores, archaea, and dust mites suspended in the air.1 These microorganisms interact with surfaces and occupants, and their populations are significantly influenced by indoor environmental conditions, particularly humidity.1

These pollutants, whether of outdoor origin infiltrating indoors or emitted from indoor sources, lead to concentrations that result in exposure, and ultimately, intake and dose, which can have toxic health effects.1 The science of indoor chemistry focuses on emissions and concentrations, while health science investigates exposure, intake, dose, and health outcomes.1

Active (Anthropogenic) Sources and Mitigation Strategies

Active sources of indoor pollutants are those derived from human activity, and many are controllable through design and occupant behavior.1

  • Cooking: This is a major indoor source of PM2.5 and other combustion byproducts, including nitrogen and sulfur oxides, and unburned gases, especially when cooking with gas.1 Effective mitigation requires a well-designed range hood with a deep sump and adequate exhaust ventilation.1 Downdraft range hoods are generally ineffective at capturing upward-flowing pollutants and are not recommended for comprehensive pollutant capture.1

  • Showering: Steamy showers introduce significant water vapor, which, if not removed, can linger and contribute to dampness.1 Moisture-sensing bath fans and proper material selection in bathrooms are essential to manage this moisture.1

  • Indoor Combustion: Unvented combustion appliances, such as decorative gas fireplaces, are a significant health hazard, releasing pollutants like carbon monoxide and PM2.5.1 These should be avoided indoors or properly vented to the outdoors.1

  • Air Fresheners and Personal Care Products: Many air fresheners, creams, lotions, cosmetics, and scented laundry detergents contain endocrine-disrupting chemicals, highly fluorinated chemicals, plasticizers, and antimicrobials that are emitted into the indoor air.1 Educating clients about these sources and advocating for their avoidance is crucial.1

  • Occupants and Pets: Humans and animals are continuous sources of particles and gases, contributing to the indoor chemical spectrum.1

These active sources represent categories where direct action can be taken through design choices, equipment selection, and educating homeowners on operational best practices.1

Passive Emissions: Persistent Chemical Contaminants in Building Materials and Products

Beyond active, human-driven sources, indoor environments are also affected by passive emissions from building materials and consumer products that off-gas pollutants over time.

  • Flame Retardants: These chemicals, often found in furniture foam, textiles, carpets, and even spray foam insulation, do not easily break down and can continuously leach into the environment.1 They are linked to endocrine and thyroid disruption, immunotoxicity, reproductive toxicity, cancer, and adverse effects on fetal and child development, with children being particularly vulnerable due to their developing organs and hand-to-mouth behaviors.18

  • Phthalates and Plasticizers: Found in vinyl blinds, flooring, and many plastics, plasticizers are added to make materials supple but off-gas over time, making the material brittle.1 Phthalates are hormone-disrupting chemicals widely used as plasticizers in food contact materials and construction plastics.27 They can enter the human body through inhalation, ingestion, or dermal absorption and are associated with endocrine and reproductive dysregulation, early puberty, asthma, and allergies.27

  • Perfluorinated Chemicals (PFAS): Used for non-stick coatings and water/stain repellency in carpets and other textiles, these "forever chemicals" pose long-lasting health threats.1

  • Antimicrobials: Found in hand soaps, laundry detergents, and some building products, these chemicals have limited benefits and can cause adverse health effects.1

  • Volatile Organic Compounds (VOCs): Beyond formaldehyde, other VOCs like acetone, benzene, toluene, and xylene are emitted from paints, varnishes, wax, cleaning products, and stored fuels.1 These can cause a range of health issues, including respiratory irritation, headaches, and damage to various organ systems.20

These passive emissions highlight the need for careful material specification during design and client education regarding product choices within the home.

The "Six Classes of Harmful Chemicals" and Their Pervasiveness

To simplify the complex landscape of chemical pollutants, the "Six Classes of Harmful Chemicals" framework provides a useful categorization for architects and clients to understand and mitigate exposure.1 These classes represent toxic substances commonly found in everyday products that contribute to serious health problems:

  1. PFAS (Per- and Polyfluoroalkyl Substances): "Forever chemicals" with long-lasting environmental and health threats.29

  2. Antimicrobials: Chemicals with limited health benefits but adverse health effects.29

  3. Flame Retardants: Chemicals that do not provide a fire safety benefit and can damage health.29

  4. Bisphenols & Phthalates: Hormone-disrupting chemicals with widespread use leading to constant exposure.29

  5. Some Solvents: Linked to neurological problems and increased cancer risk.29

  6. Certain Metals: Toxic metals like mercury, arsenic, cadmium, and lead that should be avoided.29

These classes underscore the pervasive nature of chemical exposure in indoor environments, emphasizing that many common products and materials contribute to the overall chemical load. Understanding these categories empowers architects to make informed material selections and advocate for healthier product choices, thereby reducing occupant exposure to these harmful substances.29

The Role of Dust as a Pollutant Reservoir

Indoor dust is not merely innocuous debris; it is a complex chemical mixture.1 Particles in dust can be likened to "candy-coated M&Ms," where the particulate core is coated with various chemical gases.1 Studies indicate that the constituent molecules found in human blood from indoor environments often correlate in relative concentrations to those found on the floor, suggesting that whatever is on the floor is likely already in the body.1 This highlights dust as a significant reservoir for semi-volatile organic compounds (SVOCs) that can off-gas for decades, as well as VOCs.1 Effective strategies for minimizing indoor emissions must therefore consider not only source reduction but also the management of dust as a chemical sink.


Principle 3: Properly Ventilate

Distinguishing True Ventilation from Air Leakage

Effective ventilation is the controlled movement of air into and out of a building, typically achieved through mechanical means and deliberately placed openings in the building envelope.30 It is crucial to differentiate this from uncontrolled air leakage, often mistakenly referred to as a "building breathing".1 Buildings themselves do not need to breathe; rather, the occupants require fresh air.1 Air leakage, where air infiltrates from random spaces like crawl spaces or wall cavities, is not ventilation and can introduce pollutants and moisture into the conditioned space.1 True ventilation, conversely, ensures that clean air is supplied and stale, polluted air is exhausted in a controlled manner.30

The Dual Purpose of Ventilation: Exhausting Pollutants and Supplying Fresh Air

Ventilation serves a dual purpose: to remove polluted indoor air and to introduce clean outdoor air.1 This process is analogous to a car's engine pulling in clean air for combustion and an exhaust pipe expelling polluted air.1 The priority is first to get the "bad stuff out," and then to bring "clean air in".1 This requires a systems-based approach, where professionals, rather than homeowners, determine the appropriate climate-zone-specific enclosure and mechanical systems to deliver conditions that support human thriving.1 ASHRAE Standard 62.1 provides guidelines for ventilation rates, contaminant control, and air distribution to ensure acceptable indoor air quality in commercial and institutional buildings, while ASHRAE 62.2 addresses residential applications.31

Effective Local Exhaust: Kitchen and Bathroom Ventilation

Local exhaust systems are designed to remove high concentrations of contaminants at their source, primarily in kitchens and bathrooms.1

  • Kitchens: Cooking is a significant source of indoor air pollution, including particulate matter and combustion gases.1 An effective range hood is essential for capturing these pollutants at the source.1 ASHRAE guidelines emphasize "capture and containment" and specify minimum exhaust flow rates based on cooking appliance type and hood configuration.23 Flat-bottomed or downdraft range hoods are generally less effective at capturing upward-flowing cooking effluents compared to deep-sump, overhead models.1 ASHRAE 62.2 recommends a minimum of 100 CFM for kitchen exhaust, or 5 air changes per hour for continuous ventilation.33

  • Bathrooms: Showers generate substantial moisture, which must be removed to prevent dampness and mold growth.1 ASHRAE 62.2 recommends a minimum of 50 CFM of intermittent ventilation or 20 CFM of continuous ventilation for bathrooms, typically 1 CFM per square foot.33

For both kitchen and bathroom exhaust fans, ASHRAE 62.2 mandates certified sound levels of 3.0 sones or less to ensure they are actually used by occupants, rather than being turned off due to noise.35 Automated ventilation, such as humidity or motion sensing fans, is also encouraged to ensure consistent operation.35

Whole-Building Fresh Air: The Role of ERVs & HRVs

Beyond local exhaust, whole-building ventilation introduces fresh outdoor air to dilute unavoidable contaminants from people, pets, and off-gassing.33 For airtight, energy-efficient homes, this requires mechanical ventilation systems that can recover energy and moisture.15

  • Heat Recovery Ventilators (HRVs): These systems recover sensible heat from the outgoing exhaust airstream and transfer it to the incoming fresh air, reducing heating and cooling demands.36 HRVs are most often suitable for colder, drier climates where sensible heat transfer is the primary concern, although with a changing climate with hotter and more humid summers, more climate zones are becoming ERV territory.38

  • Energy Recovery Ventilators (ERVs): ERVs are "total enthalpic devices" that transfer both sensible and latent heat (moisture) between air streams.37 In warmer seasons, ERVs pre-cool and dehumidify incoming air, while in cooler seasons, they humidify and pre-heat.37 This helps maintain indoor relative humidity within comfortable ranges (e.g., 40-50%) and reduces the overall HVAC equipment capacity needed.37 ERVs are highly beneficial ventilation devices, where they help prevent a certain percentage of unwanted outdoor humidity from entering the indoor environment (although they do require dedicated dehumidification in order to properly work), and in very dry climates, where they can help retain desired indoor humidity conditions.38

ASHRAE 62.2 provides formulas for calculating whole-house ventilation rates based on floor area and the number of bedrooms.33 Despite their significant benefits for indoor air quality and energy efficiency, ERVs and HRVs are adopted in a very small percentage of American homes, estimated at 1-2%.1 This low adoption rate reflects a lag behind Europe and Asia, partly due to misaligned cost-benefit relationships and a general lack of awareness regarding the overlap of building science and health sciences.1 Architects are instrumental in advocating for the inclusion of these systems to ensure continuous, balanced ventilation and superior indoor air quality.


Principle 4: Keep the Air in Proper Humidity Ranges

The Detrimental Effects of Excess Moisture: Promoting Biological Growth and Material Degradation

Maintaining proper humidity levels is paramount for a healthy home. Water, often referred to as the "universal solvent," inexorably works to break down materials and facilitate chemical changes, leading to the emission of substances into the air.1 Excess moisture creates conditions conducive to the growth of undesirable biological organisms, particularly mold and bacteria.1 Mold, a decomposer essential outdoors, is highly detrimental indoors, producing allergens, irritants, and potentially toxic substances.1 Fungal growth is significantly promoted by high humidity levels.42

Beyond biological growth, high humidity can cause dimensional instability in wood products, leading to issues like cupping in hardwood floors.1 It can also lead to condensation on windows and absorption into sheetrock and wood, initiating rot and decay.1 Furthermore, high humidity can increase the emission rates of volatile organic compounds (VOCs) from building materials through hydrolysis.1

Health Impacts of Damp Environments: Respiratory Issues and Beyond

The presence of dampness and mold in homes has well-documented associations with adverse health outcomes.1 Meta-studies on dampness and health have established sufficient evidence for relationships between exposure to damp indoor environments and various respiratory issues.1 These include upper respiratory tract infections, wheezing, coughing, exacerbation or development of asthma, chronic bronchitis, and other respiratory infections.1 Allergic rhinitis and eczema are also correlated with dampness.1 For instance, there is a 20-50% increased risk of asthma in damp houses.41 The indoor microbiome, which is heavily influenced by environmental conditions, directly impacts the human microbiome, further underscoring the importance of moisture control.1

Maintaining Optimal Humidity Levels: The 40-60% RH Range

To mitigate these risks, maintaining indoor relative humidity within an optimal range is crucial. While specific set points can be debated, a range between 40% and 60% relative humidity (RH) at normal room temperatures is widely recommended by professional bodies, including ASHRAE and the Danish Technical University.1 This range is considered ideal for minimizing the growth of bacteria, viruses, and fungi, as well as reducing the incidence of respiratory infections.42 Humidity levels below this range can cause dryness of skin and mucous membranes, leading to irritation and potentially impairing the respiratory immune system, while levels above can promote microbial growth and hinder evaporative cooling.42 For individuals with chemical sensitivities, even lower humidity levels may be advised.1

The Impact of Energy Codes on Latent Loads and Dehumidification Needs

A significant challenge in modern home design stems from the evolution of energy codes. These codes have drastically improved building thermal envelopes, leading to substantial reductions in sensible cooling loads through increased insulation, better windows, and improved airtightness.1 While this reduces overall energy consumption for cooling, it also means that conventional air conditioning systems, which traditionally handled both sensible (temperature) and latent (humidity) loads, run less frequently.1

However, internal humidity loads from occupants and their activities remain persistent.1 As sensible loads decrease, the ratio of sensible to latent loads shifts, making standard air conditioners less effective at maintaining comfortable humidity levels.44 This creates a situation where homes may be thermally comfortable but excessively humid, leading to issues like mold growth and poor indoor air quality, even in energy-efficient designs.1 This is not a sudden problem but one that has grown over years as buildings have become tighter, and it necessitates a dedicated approach to dehumidification.1

Strategies for Effective Dehumidification

Given the limitations of traditional air conditioning in low-load homes, supplemental or dedicated dehumidification is increasingly necessary to maintain healthy indoor humidity levels.44 There are two primary methods for drying air:

  • Vapor Compression (Refrigerant-Based) Dehumidifiers: These systems draw air over a cold coil, causing moisture to condense and be collected.1 They are generally more energy-efficient and cost less for residential applications, working best in warmer climates (above 16°C).1

  • Desiccant Dehumidifiers: These draw air over a desiccant chemical that absorbs moisture.1 While they typically have higher energy consumption, they perform consistently across a wider temperature range, including colder environments, and can even release warmth, which can be beneficial in winter.45

For most residential applications, vapor compression systems are currently the more practical and energy-efficient choice.1 The cost of operating dedicated dehumidification in humid climates can be surprisingly low, often just cents per day, making it a highly cost-effective intervention for health and durability.1 Architects should integrate dedicated dehumidification systems into their designs, recognizing that they are a critical component for maintaining a healthy indoor environment in modern, energy-efficient homes.


Principle 5: Use Robust Filtration to Capture Indoor Pollutants

The Ubiquity and Harm of Particulate Matter

Particulate matter pollution is pervasive in homes, generated both mechanically (e.g., dust, pet dander) and chemically (e.g., cooking, off-gassing).1 These particles, particularly fine (PM2.5) and ultrafine (PM0.1), represent the majority of sources for indoor air-related sickness.1 PM2.5 can penetrate deep into the lungs, enter the bloodstream, and lead to serious health outcomes, including neurodegenerative diseases, neurodevelopmental disorders, and cardiovascular diseases.3 Exposure to PM2.5 has been linked to epigenetic alterations and cognitive impairment, even hours after exposure.3 Given that particles can also enter the body through the skin, robust filtration is essential for overall health.1

Understanding Filtration Efficacy: MERV Ratings and HEPA Filters

The effectiveness of air filters is quantified by their Minimum Efficiency Reporting Value (MERV) rating, which indicates a filter's ability to capture particles between 0.3 and 10 microns.48 A higher MERV rating signifies better particle capture efficiency.48

  • MERV 13: This is generally considered a minimum for effective particulate capture in homes, capable of capturing at least 50% of particles between 0.3-1.0 microns, and 85% or more of particles between 1.0-3.0 microns.1 ASHRAE has recommended MERV-13 or better filtration for infectious aerosol exposure reduction.47

  • HEPA Filters: High-Efficiency Particulate Air (HEPA) filters are mechanical filters designed to remove at least 99.97% of airborne particles with a size of 0.3 microns, which represents the Most Penetrating Particle Size (MPPS).48 Particles larger or smaller than 0.3 microns are captured with even higher efficiency.49 HEPA filtration is considered the gold standard for capturing dust, pollen, mold, bacteria, and other airborne particles.48

Architects should specify mechanical systems capable of accommodating high-efficiency filters (e.g., MERV 13 or higher) and ensure that ductwork design minimizes pressure drop to allow for proper airflow through these denser filters.1 Regular filter replacement is crucial for maintaining performance.48

The Economic Benefits of Effective Filtration

Investing in effective particulate capture systems yields significant economic benefits that consistently exceed costs.1 Studies from Lawrence Berkeley National Laboratory, for example, estimate annual economic benefits ranging from $0.2 billion to $1.1 billion from improved particle filtration in U.S. homes and commercial buildings.50 These benefits stem from reduced respiratory diseases, allergies, asthma, and symptoms of sick building syndrome, as well as increased productivity and reduced absenteeism.50 For some interventions, the predicted annual mortality-related economic benefits can exceed $1000 per person, with benefit-to-cost ratios ranging from approximately 3.9 to 133.51 The largest reductions in mortality and highest economic benefits are often observed with continuously operating portable air cleaners equipped with HEPA filters.51 This evidence strongly supports the integration of robust filtration as a cost-effective strategy for improving public health within buildings.

Caution Regarding Active Air Cleaning Technologies

While mechanical filtration (like MERV and HEPA) is highly effective and generally safe, caution is advised regarding certain "active" air cleaning technologies, such as plasma-based, ion-based, or ozone-generating devices.1 Many ionizers, for instance, produce ozone as a byproduct.52 Ozone, a molecule composed of three oxygen atoms, can damage the lungs even at relatively low concentrations, causing chest pain, coughing, shortness of breath, and throat irritation.53 It can also worsen chronic respiratory diseases like asthma and compromise the body's ability to fight infections.52 Furthermore, ozone can react with other chemicals in the indoor environment to form harmful or irritating by-products, potentially increasing the total concentration of organic chemicals in the air.53 While some manufacturers claim these devices "purify" the air, scientific research suggests that for many common indoor chemicals, the reaction with ozone may take months or years, or produce new harmful compounds.53 Therefore, more research is needed on these active systems, and architects should prioritize proven, passive filtration methods for occupant safety.


Home as Health Intervention

The traditional paradigm of home design, often driven by visual aesthetics and initial cost, has overlooked the profound and lasting impact of indoor environments on human health. This report underscores that the home is not merely a structure but a critical health intervention, capable of influencing fundamental biological processes, cognitive function, and restorative sleep. The pervasive and often invisible nature of indoor air pollutants, coupled with the vast amount of time spent indoors, elevates the architect's role from a designer of spaces to an advocate for public health.

By embracing the "5 Principles of a Healthy Home"—starting with a good building enclosure, minimizing indoor pollutants, properly ventilating, maintaining optimal humidity, and employing robust filtration—architects can proactively design environments that foster human thriving. This requires a shift in priorities, challenging the "eyeballs, egos, and and first cost" mentality and instead prioritizing durability, moisture control, air quality, and non-toxic material selection. Integrating robust air distribution systems, dedicated dehumidification, and high-efficiency filtration are not mere conveniences but essential components of a health-centric design strategy.

The evidence from leading institutions like Lawrence Berkeley National Labs, Harvard T.H. Chan School of Public Health, and ASHRAE consistently demonstrates the tangible health benefits and economic advantages of these principles. Architects are uniquely positioned to lead this transformation, educating clients and project teams on the long-term value of healthy homes. The path forward demands a commitment to building science, a systems-thinking approach, and an unwavering dedication to the well-being of building occupants. This is the new normal: home as health intervention, and architect as advocate.


Works cited

  1. 5 Principles Of A Healthy Home, Transcript of The Building Science Podcast Epsiode

  2. The National Human Activity Pattern Survey (NHAPS): A Resource for Assessing Exposure to Environmental Pollutants | Indoor Environment, accessed May 27, 2025, https://indoor.lbl.gov/publications/national-human-activity-pattern

  3. The Role of Epigenetic Mechanisms in the Development of PM2.5-Induced Cognitive Impairment - PMC - PubMed Central, accessed May 27, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC11861554/

  4. Neighborhoods and Epigenetics: Air Pollution, accessed May 27, 2025, https://gero.usc.edu/cbph/wp-content/uploads/2025/02/CBPH-Geroscience-2025-Ailshire.pdf

  5. Air pollution exposure is associated with gene expression in children - Oxford Academic, accessed May 27, 2025, https://academic.oup.com/eep/article/10/1/dvae025/7929971

  6. Air pollution harms cognition just hours after exposure, study finds - News-Medical.net, accessed May 27, 2025, https://www.news-medical.net/news/20250211/Air-pollution-harms-cognition-just-hours-after-exposure-study-finds.aspx

  7. Indoor Air Quality - Healthy Buildings, accessed May 27, 2025, https://healthybuildings.hsph.harvard.edu/research/indoor-air-quality/

  8. Air Quality and Sleep: How Indoor Pollution Can Affect Restfulness | Air Oasis, accessed May 27, 2025, https://www.airoasis.com/blogs/articles/air-quality-and-sleep-how-indoor-pollution-can-affect-restfulness

  9. How does indoor air quality affect sleep? - Dyson, accessed May 27, 2025, https://www.dyson.com/discover/insights/air-quality/indoor/how-does-indoor-air-quality-affect-sleep

  10. How Buildings Work: Building Science Facts to Know about Air and ..., accessed May 27, 2025, https://www.buildgp.com/blog/how-buildings-work-building-science-facts-to-know-about-air-and-moisture

  11. 7 Harmful Chemicals Commonly Used in Home Construction - Eco-Building Products, accessed May 27, 2025, https://eco-buildingproducts.com/blogs/blog/harmful-home-construction-chemicals

  12. Rainscreens: When, Where, and Why? | RDH Building Science, accessed May 27, 2025, https://www.rdh.com/wp-content/uploads/2022/12/Rainscreens-When-Where-and-Why_2022-02-16.pdf

  13. BSC Information Sheet 303 Common Flashing Details - buildingscience.com, accessed May 27, 2025, https://buildingscience.com/sites/default/files/migrate/pdf/BSC_Info_303_Common_flashing.pdf

  14. Building Science Education - 3-15 - Building Envelope Control Layers - YouTube, accessed May 27, 2025, https://www.youtube.com/watch?v=eS4re42RFrA

  15. Phius Passive Building Principles, accessed May 27, 2025, https://www.phius.org/passive-building/what-passive-building/passive-building-principles

  16. technical article: weather barriers, water-resistive barriers, air ..., accessed May 27, 2025, https://www.airbarrier.org/wp-content/uploads/2021/09/WB-WRB-AB-VB-Are-They-Not-All-The-Same.pdf

  17. Roofing Air Barrier - Sika USA, accessed May 27, 2025, https://usa.sika.com/sarnafil/en/products-systems/roofing-innovations/air-barrier.html

  18. Flame Retardants and Your Health fact sheet, accessed May 27, 2025, https://www.niehs.nih.gov/sites/default/files/health/materials/flame_retardants_508.pdf

  19. Flame Retardants | National Institute of Environmental Health Sciences, accessed May 27, 2025, https://www.niehs.nih.gov/health/topics/agents/flame_retardants

  20. Volatile Organic Compounds' Impact on Indoor Air Quality | US EPA, accessed May 27, 2025, https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality

  21. Volatile organic compounds (VOCs): Health effects and risks - Medical News Today, accessed May 27, 2025, https://www.medicalnewstoday.com/articles/volatile-organic-compounds-health-effects

  22. WHO air quality guidelines - C40 Knowledge Hub, accessed May 27, 2025, https://www.c40knowledgehub.org/s/article/WHO-Air-Quality-Guidelines?language=en_US

  23. Kitchen Hood Design - ASHRAE | PDF - Scribd, accessed May 27, 2025, https://www.scribd.com/document/675958425/Kitchen-Hood-Design-ASHRAE

  24. Are downdraft ventilation units better in 2024? Honest reviews please - Houzz, accessed May 27, 2025, https://www.houzz.com/discussions/6423135/are-downdraft-ventilation-units-better-in-2024-honest-reviews-please

  25. Indoor air quality - Wikipedia, accessed May 27, 2025, https://en.wikipedia.org/wiki/Indoor_air_quality

  26. Recommendations - WHO Indoor Air Quality Guidelines - NCBI Bookshelf, accessed May 27, 2025, https://www.ncbi.nlm.nih.gov/books/NBK264291/

  27. Phthalate Exposure and Long-Term Epigenomic Consequences: A Review - Frontiers, accessed May 27, 2025, https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2020.00405/full

  28. Health risk assessment of dietary exposure to phthalates from plastic-coated paper among university students - SciELO, accessed May 27, 2025, https://www.scielo.br/j/cta/a/Qbfmn4j7QZBKQ6Vs7LC7JKJ/

  29. Six Classes of Harmful Chemicals - Green Science Policy Institute, accessed May 27, 2025, https://greensciencepolicy.org/harmful-chemicals/

  30. BALANCED VENTILATION DESIGN PRINCIPLES - Phius, accessed May 27, 2025, https://www.phius.org/sites/default/files/2022-06/Ryan%20Abendroth%20-%20Ryan%20Abendroth%20Mechanical%20Summit.pdf

  31. Understanding ASHRAE Ventilation Standard 62.1 | Sanalife, accessed May 27, 2025, https://www.sanalifeenergy.com/blog/understanding-ashrae-ventilation-standard-62-1

  32. Standards 62.1 & 62.2 - ASHRAE, accessed May 27, 2025, https://www.ashrae.org/technical-resources/bookstore/standards-62-1-62-2

  33. ASHRAE 62.2 for New Construction - How to Calculate the Required Amount of Ventilation, accessed May 27, 2025, https://hvacdesignpros.com/ashrae-62-2-construction-calculate-required-amount-ventilation/

  34. ASHRAE 62.2 Alternative Compliance Path - Residential Energy Dynamics, accessed May 27, 2025, https://www.redcalc.com/ashrae-62-2-alternative-compliance-path/

  35. ASHRAE 62.2 - Air King Indoor Air Quality Standards, accessed May 27, 2025, https://www.airkinglimited.com/ashrae-62-2/

  36. How to Understand the Difference Between HRV & ERV Ventilation, accessed May 27, 2025, https://blackdiamondtoday.com/blog/how-to-understand-the-difference-between-hrv-and-erv-ventilation/

  37. Heat recovery ventilation - Wikipedia, accessed May 27, 2025, https://en.wikipedia.org/wiki/Heat_recovery_ventilation

  38. Very High Efficiency Commercial HVAC System Design Specification and Guidelines - IMT, accessed May 27, 2025, https://imt.org/business-practices/very-high-efficiency-hvac/spec/

  39. United States Ventilation Equipment Overview Report 2025: - GlobeNewswire, accessed May 27, 2025, https://www.globenewswire.com/news-release/2025/02/27/3033636/28124/en/United-States-Ventilation-Equipment-Overview-Report-2025-Market-to-Reach-7-Billion-by-2030-from-5-Billion-in-2024-Driven-by-High-Growth-in-Sales-of-High-Valued-HRV-ERV-Units.html

  40. Microbiomes of the built environment - Wikipedia, accessed May 27, 2025, https://en.wikipedia.org/wiki/Microbiomes_of_the_built_environment

  41. Avoiding Indoor airPLUS Pi0alls for Your PHIUS Projects, accessed May 27, 2025, https://www.phius.org/sites/default/files/2022-07/Wasser-IAP_PHIUS.pdf

  42. Optimal indoor humidity for health - Condair, accessed May 27, 2025, https://www.condair.de/en/medical-studies/optimal-indoor-humidity-for-health

  43. Industry guidelines and regulations on indoor humidity - Condair, accessed May 27, 2025, https://www.condair.ie/industry-guidelines-and-regulations-on-indoor-humidity

  44. Effect of occupant behavior on peak cooling and dehumidification loads in typical and high-efficiency homes - OSTI.GOV, accessed May 27, 2025, https://www.osti.gov/servlets/purl/1488725

  45. Desiccant vs Compressor Dehumidifiers - EcoAir, accessed May 27, 2025, https://ecoair.org/pages/desiccant-vs-compressor-dehumidifiers

  46. Desiccant or compressor dehumidifier? - Ionmax, accessed May 27, 2025, https://ionmax.com.au/blogs/resources/desiccant-or-compressor-dehumidifier

  47. Increased Awareness of Health Impacts of Indoor PM2.5 and Need for Particulate Matter Control in Occupied Spaces - ASHRAE, accessed May 27, 2025, https://www.ashrae.org/file%20library/communities/committees/standing%20committees/environmental%20health%20committee%20(ehc)/emerging-issue-brief-pm.pdf

  48. What is a HEPA filter? | US EPA, accessed May 27, 2025, https://www.epa.gov/indoor-air-quality-iaq/what-hepa-filter

  49. What is a MERV rating? | US EPA, accessed May 27, 2025, https://www.epa.gov/indoor-air-quality-iaq/what-merv-rating

  50. Financial > IEQ - GSA Sustainable Facilities Tool, accessed May 27, 2025, https://sftool.gov/explore/green-building/section/50/ieq/financial-impact

  51. William J. Fisk's research while affiliated with Lawrence Berkeley National Laboratory and other places - ResearchGate, accessed May 27, 2025, https://www.researchgate.net/scientific-contributions/William-J-Fisk-2054540428

  52. Air purifiers vs ionizers: What's the difference? - Live Science, accessed May 27, 2025, https://www.livescience.com/air-purifiers-vs-ionizers

  53. Ozone Generators that are Sold as Air Cleaners | US EPA, accessed May 27, 2025, https://www.epa.gov/indoor-air-quality-iaq/ozone-generators-are-sold-air-cleaners

Architectural Design, Building Enclosure, Building Science, Dehumidification, Filtration, Healthy Home, High Performance Homes, HVAC, Indoor Air Quality, Mechanical Design, VentilationPositive EnergyBuilding design and human health, indoor environmental quality (IEQ), principles of a healthy home, architects as advocates for human thriving, aesthetics vs. first cost in construction, indoor air quality, structural resilience, occupant well-being, human thriving, time spent indoors, invisible threats in indoor environments, particles, gas-phase pollutants, bioaerosols, physiological functions, cognitive functions, epigenetic changes, prenatal gene regulation, indoor air pollutants and gene expression, impact of air quality on cognitive abilities, decision-making, CO2 levels and cognitive performance, impact of air quality on sleep, particulate matter and nitrogen dioxide, sleep disturbances, building enclosure, moisture transport, water management, deflect, drain, dry principles, water-resistive barrier (WRB), flashing details, air barrier, insulation layer, vapor barrier, air leakage, air movement and water vapor transport, material selection and indoor air quality, toxic air pollutants, flame retardants, formaldehyde, chromated copper arsenate (CCA), lead, polyvinyl chloride (PVC), phthalates, dioxins, isocyanates, crystalline silica, air distribution system, flex duct, duct board, fluid dynamics, metal ductwork, air mixing, pollutant removal, indoor pollutants: particles, gases, particulate matter (PM), PM2.5, PM10, ultrafine particles, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), bioaerosols: bacteria, viruses, protozoa, fungal spores, archaea, dust mites, active sources of indoor pollutants, cooking, showering, indoor combustion, air fresheners, personal care products, passive emissions, plasticizers, perfluorinated chemicals (PFAS), antimicrobials, six classes of harmful chemicals, dust as a pollutant reservoir, ventilation vs. air leakage, exhausting pollutants, supplying fresh air, ASHRAE Standard 62.1, ASHRAE 62.2, local exhaust: kitchen and bathroom, range hood, CFM (cubic feet per minute), whole-building fresh air, heat recovery ventilators (HRVs), energy recovery ventilators (ERVs), humidity control, excess moisture, mold growth, dimensional instability, VOC emissions, damp environments and health impacts, respiratory issues, 40-60% RH range, energy codes and latent loads, dehumidification needs, vapor compression dehumidifiers, desiccant dehumidifiers, particulate matter filtration, MERV ratings, HEPA filters, active air cleaning technologies, ozone, mechanical filtration.