Design Around People. A Good Building Follows.

Blog

Read more about a range of building science, engineering, and architecture topics on our company blog.

Marfa Ranch

By Positive Energy staff. Photography by Casey Dunn


Architecture Meets Applied Building Science in the Chihuahuan Desert

The Marfa Ranch is a distinguished residential project by Lake Flato Architects, is thoughtfully situated on a low rise within the expansive, pristine desert grasslands of Marfa, Texas. This unique location, nestled between the Chihuahuan Desert and the majestic Davis Mountains, presents a challenging yet profoundly beautiful environment.[1] The architectural design of the ranch consciously adopts a low profile, comprising eight distinct structures meticulously organized around a central courtyard. This layout, shaded by native mesquite trees, serves as a cool respite from the sun-drenched desert beyond its walls, drawing inspiration from the area's earliest regional architectural traditions.[1] Architect Bob Harris of Lake Flato articulated that the design embodies a "deliberate quality of spareness that matches the qualities of the land," emphasizing the importance of the house maintaining a low profile to merge seamlessly with the terrain while simultaneously opening to distant views and providing crucial protection from the region's harsh winds and intense sun.[2] This project has garnered significant recognition, including the 2022 Texas Society of Architects Design Award and its inclusion in Dezeen's Top 10 Houses of 2022.[1]

The design approach at Marfa Ranch exemplifies a profound synergy between traditional and modern climate-responsive architecture. The repeated emphasis on the design "borrowing from the area's earliest structures" [1] and utilizing a courtyard plan with thick rammed earth walls to combat the "extremes of the region — heat, cold, and wind" [1] is not merely a stylistic choice. It represents a deliberate reinterpretation of vernacular architecture, where ancient wisdom regarding thermal mass and passive cooling through courtyards is integrated with contemporary building science and engineering. The project, therefore, is not simply a modern house in the desert; it is a modern house of the desert, demonstrating how historical climate-adapted strategies remain highly relevant and effective when enhanced by modern technical expertise. This integrated perspective suggests that successful high-performance design often finds its roots in time-tested, climate-specific principles.

Positive Energy played a pivotal role as both Mechanical Engineers and Building Envelope consultants for the Marfa Ranch project, collaborating closely with Lake Flato Architects.[1] This dual responsibility is a significant departure from traditional project structures, where these critical roles are often separated. As an MEP engineering firm specializing in high-end residential architecture, Positive Energy is committed to leveraging building science and human-centered design to engineer healthy, comfortable, and resilient spaces.[10] Our overarching vision is to create buildings that are healthy, comfortable, durable, efficient, resilient, sustainable, and regenerative, all while maintaining architectural excellence.[12] The building envelope (comprising walls, roof, and windows) and the MEP systems (including heating, cooling, and ventilation) are intrinsically linked in determining a building's overall energy performance, occupant comfort, and indoor air quality. Positive Energy's comprehensive involvement across both mechanical systems and the building enclosure was part of an integrated design approach where these interconnected elements are considered holistically from the project's inception. This collaborative model leads to optimized performance outcomes that would be challenging to achieve if these critical aspects were addressed in isolation or sequentially, representing a hallmark of advanced building science practices.


The Rammed Earth Building Envelope

Harnessing Thermal Mass in Arid Climates

The concept of thermal mass refers to a material's inherent ability to absorb, store, and subsequently release heat.[13] Materials characterized by high density and a high specific heat capacity are ideally suited for this purpose, with rammed earth being a prime example.[13] The Marfa Ranch prominently features two-foot-thick (approximately 600mm) rammed earth walls, constructed using an impressive three million pounds of earth, some of which was sourced directly from the local site.1 These substantial walls are fundamental to the home's passive heating and cooling strategy.[1]

In arid climates such as Marfa, which are defined by significant diurnal temperature ranges—hot days followed by cool nights—thermal mass proves exceptionally effective.[14] During the intense heat of the day, the thick rammed earth walls absorb thermal energy from direct sunlight and the ambient air, effectively preventing this heat from immediately penetrating the interior spaces. As external temperatures decline during the night, the stored heat is gradually released back into the interior, contributing to a warmer indoor environment.[13] Conversely, during cool nights, the walls release their stored heat, and if the building is strategically ventilated, they can be "regenerated" by absorbing the cooler night air. This process prepares the walls to absorb heat again during the subsequent day, thereby maintaining a comfortable indoor climate.[13]

The effectiveness of rammed earth's thermal mass is directly tied to the diurnal temperature range of the Marfa climate. While insulation (R-value) is commonly understood for its thermal resistance, research consistently highlights that rammed earth's primary thermal benefit in arid climates is its thermal mass and the resulting thermal lag.[13] Studies indicate that rammed earth is "especially beneficial in high diurnal temperature ranges," capable of both moderating indoor temperatures and shifting peak temperatures, with reported time lags ranging from 6 to 9 hours, or even up to 10 hours.[16] This means the wall actively buffers temperature swings rather than simply resisting heat flow. For architects, this distinction is crucial: in climates with significant day-night temperature differences, designing for thermal lag—effectively matching the building's thermal response time to the climate's daily cycle—can provide a powerful impact on occupant comfort and energy efficiency than solely maximizing R-value, particularly given that uninsulated rammed earth typically has a lower thermal resistance.[16] This approach, however, requires a deep understanding of climate-specific building science principles.

The strategic use of rammed earth at Marfa Ranch significantly reduces the reliance on active heating and cooling systems, but does not eliminate the need entirely.[13] Studies on rammed earth buildings demonstrate substantial reductions in heating and cooling loads, ranging from 20% to 52% compared to conventional building assemblies depending on their context.[16] They can contribute to a more stable and comfortable indoor environment throughout the year, minimizing the need for large mechanical cooling systems in favor of smaller, more efficient ones.[13]

Ensuring Durability and Moisture Resilience

To enhance the structural integrity and resistance to weathering, particularly against water and wind driven erosion, rammed earth can be stabilized with additives such as Portland cement, however this does represent additional embodied carbon to an assembly that is otherwise very low embodied carbon.[8] The Marfa Ranch project utilized a stabilized mixture, initially experimenting with 7% Portland cement and ultimately settling on a 9% mixture for the majority of the construction.8 This stabilization process was crucial for achieving high compressive strengths, often comparable to concrete, and contributes to an extended lifespan of the rammed earth, with some stabilized rammed earth structures modeled to endure for more than 1,000 years.[17] This longevity is a key performance metric for sustainability when cement is added - the lifespan is required to offset the upfront carbon. While energy efficiency is a common focus in high-performance buildings, the exceptional durability and long lifespan of properly constructed rammed earth walls suggest that for a "non-disposable" building [22], the enduring quality and low maintenance requirements of the material also become a critical performance metric. This expands the definition of "good" building performance to include reduced future resource consumption and a lower lifecycle environmental impact.

Despite its inherent robustness, effective moisture management is vital for the long-term performance and durability of rammed earth. While rammed earth can naturally regulate indoor humidity if unclad walls containing clay are exposed to the interior [17], external protection is essential. Strategies employed include incorporating hydrophobic (water-repellent) additives during the mixing process [15] and ensuring proper drainage around the foundation. For instance, maintaining a 75mm exposed slab edge above finished grade helps protect against moisture ingress, such as rising damp.[15] Research from Building Science Corporation highlights that even high-R walls can be susceptible to moisture problems, underscoring the necessity of robust moisture management, particularly for wall assemblies relying solely on cavity insulation.[24]

A common assumption might be that a material's thermal properties are static. However, research indicates that the "thermal physical parameters of the rammed earth... increased with an increase in moisture content" [20], and that conductivity "varies enormously" with moisture content.25 This highlights a crucial point: effective moisture management for rammed earth walls is not solely about preventing degradation or mold; it is fundamental to maintaining the intended thermal performance of the wall assembly. If the walls become damp, their ability to store and release heat efficiently is compromised, directly impacting the building's energy consumption and occupant comfort. This demonstrates the interconnectedness of moisture control and thermal design in building science.

Rammed earth walls also exhibit a valuable moisture-buffering capacity (hygric buffering). This means they can absorb and desorb significant amounts of water vapor from the indoor environment, which helps to maintain a stable indoor relative humidity, typically within the comfortable range of 40-60%.17 This hygric mass effect can effectively reduce the demands on mechanical systems for humidification and dehumidification, depending on climate specifics.[25]

Table 1: Rammed Earth Wall Performance Attributes. This table provides a holistic view of rammed earth's performance, moving beyond the singular metric of R-value to emphasize its unique benefits such as thermal mass, moisture buffering, and exceptional durability. It directly addresses the need to understand how walls interact with the physical environment by presenting a multi-faceted performance profile, thereby enabling more informed design decisions for climate-appropriate and durable wall assemblies. It visually reinforces that rammed earth functions as a dynamic system with multiple interacting properties, rather than merely a static barrier.

The Imperative of an Airtight Enclosure

An air barrier is a meticulously designed system of materials intended to control airflow within a building enclosure, effectively resisting air pressure differences.[26] It precisely defines the pressure boundary that separates conditioned indoor air from unconditioned outdoor air.[26] For high-performance buildings like Marfa Ranch, establishing an airtight enclosure is paramount, as it serves multiple critical functions:

Firstly, it prevents significant energy loss. Uncontrolled air leakage, whether through infiltration (outdoor air entering) or exfiltration (conditioned indoor air escaping), can substantially compromise energy efficiency, leading to considerable heat gain in summer or heat loss in winter.[26]

Secondly, airtightness is crucial for preventing moisture issues. Air leakage can transport moisture-laden air into the hidden cavities of wall assemblies. When this warm, humid air encounters cooler surfaces within the wall, it can condense, leading to interstitial condensation, mold growth, and potential long-term structural damage. This is particularly prevalent in humid climates or during heating seasons when indoor air is warmer and more humid than the wall cavity.[24]

Thirdly, a robust air barrier is essential for maintaining superior indoor air quality. An uncontrolled air path allows unfiltered outdoor pollutants—such as dust, pollen, and allergens—to infiltrate the building. Simultaneously, it permits indoor contaminants to circulate freely, undermining the effectiveness of any efforts to maintain a healthy indoor environment.[27]

The outdated concept of "homes needing to breathe" is a common misconception, as highlighted by contemporary building science principles.[27] Instead, the prevailing understanding is that healthy, efficient buildings shouldn't leak and that air sealed walls, ceilings, and floors are fundamental for achieving healthy indoor air quality.[27] This is a foundational principle in building science: an airtight enclosure (the air barrier) is not merely about preventing drafts, but about enabling controlled ventilation. Without an effective air barrier, mechanical ventilation systems cannot efficiently dilute pollutants or recover energy, as uncontrolled air leakage bypasses filters and heat recovery mechanisms. This also exacerbates moisture issues due to uncontrolled air movement.[24] Therefore, the airtightness of the wall assembly is directly linked to the optimal performance of the MEP systems and, consequently, to the health and comfort of the occupants.

Finally, an airtight enclosure is vital for complementing both the thermal mass of the rammed earth walls and the mechanical ventilation systems. It ensures that the thermal mass can perform optimally by preventing unintended heat transfer via uncontrolled air movement. Crucially, it allows mechanical ventilation systems, such as Energy Recovery Ventilators (ERVs) or Heat Recovery Ventilators (HRVs), to operate effectively. This ensures that fresh, filtered, and conditioned outdoor air is delivered precisely where and when needed, without being diluted or contaminated by uncontrolled infiltration.[27]


Engineering for Superior Indoor Air Quality (IAQ)

Defining and Prioritizing IAQ

Indoor Air Quality (IAQ) refers to the overall quality of the air within and immediately surrounding buildings, directly influencing the health, comfort, and productivity of its occupants.[28] It is a critical, yet often underestimated, aspect of building design with significant implications for human well-being and functional performance.[28]

Substandard IAQ can manifest in various adverse health outcomes, including respiratory problems, exacerbated allergies, and chronic fatigue. Beyond physical health, poor IAQ has been shown to negatively affect cognitive function and overall well-being.[28] Common indoor air pollutants that contribute to these issues include particulate matter (such as dust, pollen, and mold spores), volatile organic compounds (VOCs) off-gassing from building materials, and combustion byproducts like carbon monoxide (CO) and nitrogen dioxide (NO2).[29]

High-performance buildings inherently prioritize IAQ as a fundamental component of occupant health and comfort to a large degree.[10] This emphasis aligns with the comprehensive guidelines and best practices established by organizations such as ASHRAE for the design, construction, and commissioning of buildings with excellent indoor air quality.[35]

The importance of IAQ extends far beyond mere comfort. Research explicitly links improved IAQ in green-certified buildings (which homes like the Marfa Ranch embody) to "reduced incidence of respiratory problems, allergies, and other health issues," as well as "higher cognitive function scores and better decision-making abilities".[33] Moreover, it has been observed that passive building strategies, which inherently emphasize superior IAQ, can provide a "cushion of time" during power outages, thereby enhancing a building's resilience.31 This elevates IAQ from a "nice-to-have" feature to a critical component of occupant health, productivity, and a building's overall resilience, providing a robust, data-backed justification for architects to prioritize it in their designs.

MEP Strategies for Clean Indoor Air

Achieving superior indoor air quality is a multi-faceted endeavor that requires a comprehensive and integrated approach to MEP system design. The following strategies are crucial for ensuring clean and healthy indoor environments:

1. Ventilation: Bringing in Fresh Air

Adequate ventilation is fundamental for effectively diluting indoor air pollutants and continuously replenishing indoor air with fresh, filtered outdoor air.[28] High-performance homes frequently incorporate mechanical whole-house fresh air systems, such as Energy Recovery Ventilators (ERVs) or Heat Recovery Ventilators (HRVs).[29] These systems are designed to continuously deliver a consistent volume of fresh, filtered outdoor air while simultaneously exhausting stale indoor air. A key benefit of ERVs and HRVs is their ability to recover energy from the outgoing exhaust air to pre-condition the incoming fresh air, significantly reducing the thermal load on the building's heating and cooling systems.[30] ASHRAE Standard 62.2 provides the recognized minimum ventilation rates and other measures for acceptable indoor air quality in residential buildings, serving as a critical guide for engineers in designing effective systems.[27] Local exhaust systems, particularly high-performing kitchen and bath fans vented directly to the outdoors, are essential for removing source-specific pollutants like cooking fumes (which can include particulates, carbon monoxide, and nitrogen dioxide) and excess humidity at their point of origin.[29]

2. Filtration: Removing Contaminants

High-efficiency air filters are indispensable for effectively removing airborne contaminants such as dust, pollen, and other fine particulates from the air stream.[28] Filters are rated by their Minimum Efficiency Reporting Value (MERV), with higher MERV ratings indicating a greater capacity to capture smaller particles.[29] Positive Energy, in its designs, typically specifies MERV 6+ filters for ducted systems, ensuring that air passes efficiently through the filter rather than bypassing it.[29] Some advanced high-performance projects, such as the Theresa Passive House in Texas (also involving Positive Energy), integrate even more robust, hospital-grade filtration systems to achieve superior air purity.[31]

3. Humidity Control: Preventing Mold and Enhancing Comfort

Excessive indoor humidity creates an environment conducive to mold growth, which can lead to various health issues and potential damage to building materials.[27] Consequently, MEP systems must incorporate measures for precise humidity control, such as dedicated dehumidifiers or properly sized HVAC systems, to maintain optimal indoor humidity levels, typically within the comfortable and healthy range of 40-60% relative humidity.[27] This is particularly crucial in climates that, while generally arid, may experience periods of elevated humidity or have internal moisture sources. For instance, the Marfa Ranch courtyard features a water fountain [8], which, while aesthetically pleasing and providing a connection to water, necessitates careful coordination to prevent adverse effects.

While Marfa is a desert environment, leading one to assume humidity is not a primary concern, the presence of the Marfa Ranch courtyard's "water feature that provides much-needed humidity in the dry climate" [8] introduces a localized moisture source. Our indoor air quality guidance always emphasizes the importance of humidity control to prevent mold, even in a dry climate like Marfa, TX.[27] This reveals a nuanced challenge: even when the outdoor climate is predominantly dry, internal moisture generation (from cooking, bathing, or intentional water features) can create localized humidity issues that require careful MEP design to prevent mold growth and maintain occupant comfort. Architects must consider both the macro-climate and any micro-climates created within or immediately adjacent to the building.

4. Source Control: Minimizing Emissions

The most effective strategy for ensuring good IAQ is to proactively minimize the introduction of pollutants at their source.27 This involves several key practices:

  • Material Selection: Specifying low-VOC (Volatile Organic Compound) or VOC-free building materials, finishes, furnishings, and cleaning products is paramount.[27] VOCs are chemical compounds that can off-gas into the indoor environment, contributing to air pollution and potential health issues.[28]

  • Combustion Safety: Ensuring that all combustion appliances (e.g., gas stoves, water heaters, fireplaces) are properly vented to the outdoors prevents dangerous gases like carbon monoxide and nitrogen dioxide from accumulating within the living spaces.[29]

Architects might view ventilation, filtration, and humidity control as separate components. However, the available information consistently presents these as interconnected strategies.[27] The emphasis on an "integrated design approach" for optimal IAQ [28] and the description of a comprehensive "environmental control system" that includes hospital-grade filtration and a dedicated dehumidifier [31] demonstrate that achieving truly superior IAQ requires a holistic MEP design. In this approach, ventilation, advanced filtration, precise humidity control, and source reduction work synergistically. It is not merely about adding an ERV; it is about designing a complete system where each component plays a specific, complementary role in ensuring the highest quality indoor air.

Table 2: Key Indoor Air Quality (IAQ) Parameters and MEP Strategies. This table serves as a practical guide for architects, directly addressing the need to understand "what constitutes indoor air quality" and how to achieve it through specific MEP design interventions. By linking common IAQ concerns to actionable strategies and relevant MEP components, it translates abstract concepts into concrete design considerations, fostering a deeper understanding of the interplay between building science and occupant well-being.


Positive Energy's Holistic MEP Design at Marfa Ranch

Integrated Systems for Comfort and Efficiency

Positive Energy is an MEP engineering firm dedicated to leveraging building science and human-centered design to create spaces that are not only healthy and comfortable but also resilient.[10] Our mission extends beyond conventional engineering, aiming to transform the way buildings are created to improve lives and cultivate meaningful relationships with project partners.[40] Kristof Irwin, one of the principals and visionary co-founder of Positive Energy, often articulates a comprehensive philosophy where buildings are envisioned to be healthy, comfortable, durable, efficient, resilient, sustainable, and regenerative, all while maintaining architectural distinction.[12] That vision is brought to life in each project for which we are fortunate enough to collaborate with great partners. This project was no exception. 

As both Mechanical Engineers and Building Envelope consultants for Marfa Ranch, our involvement was instrumental in ensuring the seamless integration of the project's passive design strategies—such as the thermal mass of the rammed earth walls and the cooling effects of the central courtyard—with the active mechanical systems. This home features a hydronic heating system, as well as a VRF heating/cooling system. The home’s mechanical systems also featured humidity control, makeup air, and ventilation components. Positive Energy's commitment to resilient design means creating homes that are capable of adapting to changing climate conditions and future needs.[11] This focus is particularly pertinent in a remote, high-desert environment like Marfa, where extreme temperature swings, wind, and occasional intense rain events present significant environmental challenges.[1] This approach moves beyond merely designing functional mechanical systems to actively shaping the occupant's well-being and their interaction with the built environment. For architects, this redefines the value proposition of MEP consultants, highlighting their integral role in delivering holistic, life-enhancing spaces, rather than simply providing infrastructure.

Sustainable Water Management

The Marfa region, situated within the Chihuahuan Desert, is characterized by sparse rainfall and inherent water scarcity.[3] This environmental reality makes thoughtful water conservation a critical design consideration for any project in the area. Furthermore, concerns regarding groundwater contamination from industrial activities in the nearby Permian Basin underscore the broader importance of both water quality and self-sufficiency in the region.[45]

Lake Flato’s water stewardship ambitions for this project aimed at a 97% reduction in water draw from the local utility compared to typical office buildings.[46] The strategies to achieve this included extensive greywater capture and reuse for irrigation purposes.[46] Complementing this, the property also features substantial onsite water storage capacity: 100,000 gallons stored below grade and an additional 20,000 gallons above ground.[46]

A notable example of adaptive reuse and resourcefulness at Marfa Ranch is the conversion of an old water tank, the only pre-existing structure on the site, into the property's swimming pool.[2] This innovative approach minimizes the consumption of new resources. Additionally, the central courtyard features a fountain that is replenished by collected rainwater, further showcasing the project's commitment to water capture and contributing to the oasis-like quality of the outdoor space.[1]


Designing for Performance and Well-being

The Marfa Ranch serves as a compelling case study for climate-responsive, high-performance residential architecture. It vividly demonstrates how a deep understanding and strategic application of building science principles, combined with thoughtful architectural design, can transform a challenging desert environment into a sanctuary of comfort, health, and sustainability.

The project offers invaluable lessons for architects aiming to design for superior performance and occupant well-being.

Practical Application of Building Science for Durable Wall Assemblies:

Marfa Ranch illustrates that truly durable and high-performing wall assemblies, such as stabilized rammed earth, are not merely a result of selecting a particular material. Their success stems from a comprehensive understanding of how multiple building science principles interact. This includes leveraging the inherent thermal mass of the material, meticulously managing moisture through features like hydrophobic additives and proper drainage, and ensuring the continuous integrity of the air barrier. These elements must work in concert to create a robust enclosure that effectively shields inhabitants from environmental extremes—be it heat, cold, or wind—and guarantees the building's longevity.[8]

Strategies for Good Indoor Air Quality:

Marfa Ranch exemplifies that superior indoor air quality is not an accidental outcome but a deliberate product of multi-faceted MEP strategies. This encompasses controlled ventilation, achieved through Energy Recovery Ventilators (ERVs), ensure a continuous supply of fresh, filtered air while recovering energy. It also involves high-efficiency filtration to remove particulates, precise humidity control to prevent mold growth and enhance comfort, and diligent source control, which includes specifying low-VOC materials and ensuring proper exhaust for pollutant-generating areas like kitchens and bathrooms.[27] These integrated elements collectively ensure a healthy, comfortable, and productive indoor environment, highlighting that IAQ is a proactive design outcome, not a reactive fix.

The Cornerstone of Early and Integrated Collaboration:

The successful execution of Marfa Ranch's complex rammed earth construction and integrated MEP systems underscores the immense value of early and deep collaboration between architects and building science/MEP engineering experts. Positive Energy's unique dual role in both mechanical engineering and building envelope consulting on this project is a clear demonstration of the benefits derived from an integrated design process. This approach allows for performance goals to be established and addressed from the earliest design phases, leading to optimized outcomes across energy efficiency, occupant comfort, health, and durability.[1] For architects aiming to deliver truly high-performance, resilient, and healthy buildings, early and continuous collaboration with building science and MEP experts is not merely beneficial; it is essential. This partnership enables the identification of synergies, the navigation of trade-offs, and the development of optimized solutions that seamlessly integrate architectural vision with scientific principles from the foundational design stages, rather than attempting to retrofit performance later in the project lifecycle.


Building a Healthier, More Resilient Future

The Marfa Ranch project, designed by Lake Flato Architects and engineered by Positive Energy's integral MEP and building envelope consulting, is a compelling benchmark for climate-responsive, high-performance residential architecture. It illustrates how a deep understanding and strategic application of building science can transform a challenging natural environment into a sanctuary of comfort, health, and sustainability.

This project exemplifies Positive Energy's unwavering commitment to delivering buildings that not only meet but consistently exceed expectations for occupant health, comfort, and environmental stewardship. Their specialized expertise in seamlessly integrating passive design strategies with advanced mechanical systems, coupled with a steadfast human-centered approach, illuminates a clear and actionable path forward for the Architecture, Engineering, and Construction (AEC) industry.


Works cited

  1. Marfa Ranch - Lake Flato, accessed May 28, 2025, https://www.lakeflato.com/project/marfa-ranch/

  2. Marfa Ranch / Lake Flato Architects - ArchitectureLab, accessed May 28, 2025, https://www.architecturelab.net/marfa-ranch-lake-flato-architects/

  3. Marfa Ranch - ARQA, accessed May 28, 2025, https://arqa.com/en/architecture/marfa-ranch.html

  4. Monolithic Rammed Earth Walls Keep This Marfa Ranch House Insulated in the Desert Climate - Dwell, accessed May 28, 2025, https://www.dwell.com/article/marfa-ranch-lake-flato-architects-rammed-earth-home-98a60960

  5. This West Texas desert house by Lake|Flato Architects perfectly harmonizes vernacular architecture with the stunning, but harsh natural environment, employing a courtyard typology and two-foot thick rammed-earth walls, accessed May 28, 2025, https://globaldesignnews.com/this-west-texas-desert-house-by-lakeflato-architects-perfectly-harmonizes-vernacular-architecture-with-the-stunning-but-harsh-natural-environment-employing-a-courtyard-typology-and-two-foot-thick-ramm/

  6. Lake Flato Architects creates rammed-earth ranch house in Marfa - Dezeen, accessed May 28, 2025, https://www.dezeen.com/2022/09/08/lake-flato-architects-marfa-ranch-texas/

  7. See this remarkable rammed earth house nestled on a Texas ranch - One Kindesign, accessed May 28, 2025, https://onekindesign.com/rammed-earth-house-texas-ranch/

  8. Gimme Shelter - Texas Architect Magazine, accessed May 28, 2025, https://magazine.texasarchitects.org/2022/07/06/gimme-shelter/

  9. Marfa Ranch - Texas Architect Magazine, accessed May 28, 2025, https://magazine.texasarchitects.org/2022/09/08/marfa-ranch/

  10. Positive Energy | Building Science Focused MEP Engineering, accessed May 28, 2025, https://positiveenergy.pro/

  11. Los Angeles Residential MEP Engineering Firm - Positive Energy, accessed May 28, 2025, https://positiveenergy.pro/los-angeles-residential-mep-engineering-firm

  12. Kristof Irwin, PE, M. Eng. - Positive Energy, accessed May 28, 2025, https://positiveenergy.pro/kristof

  13. Thermal Properties - Rammed Earth Enterprises, accessed May 28, 2025, https://www.rammedearthenterprises.com.au/thermal-properties/

  14. Thermal mass - | YourHome, accessed May 28, 2025, https://www.yourhome.gov.au/passive-design/thermal-mass

  15. Rammed Earth Technical Information, accessed May 28, 2025, https://www.rammedearthenterprises.com.au/rammed-earth-information-for-professionals/

  16. evaluation of rammed earth assemblies as thermal mass - Paper Preparation Guidelines, accessed May 28, 2025, https://publications.ibpsa.org/proceedings/simbuild/2020/papers/simbuild2020_C076.pdf

  17. Rammed earth - Wikipedia, accessed May 28, 2025, https://en.wikipedia.org/wiki/Rammed_earth

  18. Marfa Ranch | Sun Valley Bronze Hardware, accessed May 28, 2025, https://www.sunvalleybronze.com/projects/marfa-ranch

  19. Thermal Mass Explained: Energy Efficiency in New Homes - Constructor, accessed May 28, 2025, https://www.constructor.net.au/thermal-mass-and-your-new-home-what-you-need-to-know/

  20. Thermal and Humidity Performance Test of Rammed-Earth Dwellings in Northwest Sichuan during Summer and Winter - PMC, accessed May 28, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC10532870/

  21. Rammed earth | YourHome, accessed May 28, 2025, https://www.yourhome.gov.au/materials/rammed-earth

  22. rammed earth walls | SIREWALL, accessed May 28, 2025, https://sirewall.com/the-sirewall-system/

  23. Optimization of three new compositions of stabilized rammed earth incorporating PCM: Thermal properties characterization and LCA | Request PDF - ResearchGate, accessed May 28, 2025, https://www.researchgate.net/publication/257389761_Optimization_of_three_new_compositions_of_stabilized_rammed_earth_incorporating_PCM_Thermal_properties_characterization_and_LCA

  24. BA-1316: Moisture Management for High R-Value Walls | buildingscience.com, accessed May 28, 2025, https://buildingscience.com/documents/bareports/ba-1316-moisture-management-for-high-r-value-walls/view

  25. Hygrothermal assessment of a traditional earthen wall in a dry Mediterranean climate, accessed May 28, 2025, https://www.researchgate.net/publication/338640116_Hygrothermal_assessment_of_a_traditional_earthen_wall_in_a_dry_Mediterranean_climate

  26. Air Barriers - Building Science, accessed May 28, 2025, https://buildingscience.com/sites/default/files/migrate/pdf/RR-0403_Air_barriers_BFG.pdf

  27. Healthy Home - Positive Energy, accessed May 28, 2025, https://positiveenergy.pro/healthy-home

  28. Enhancing Indoor Air Quality through Effective MEP Design - S3DA Design, accessed May 28, 2025, https://s3da-design.com/enhancing-indoor-air-quality-through-effective-mep-design/

  29. Indoor Air Quality Features | ENERGY STAR, accessed May 28, 2025, https://www.energystar.gov/newhomes/features-benefits/indoor-air-quality-features

  30. Three Basic Strategies to Improve Indoor Air Quality - Airquip Heating & Air Conditioning, accessed May 28, 2025, https://www.airquipheating.com/article.cfm?ArticleNumber=183

  31. There Will Come Soft Rains - Texas Architect Magazine, accessed May 28, 2025, https://magazine.texasarchitects.org/2022/11/07/there-will-come-soft-rains/

  32. 3 Human-Centric MEP Design Tips for Better Indoor Environmental Quality - NY Engineers, accessed May 28, 2025, https://www.ny-engineers.com/blog/3-human-centric-mep-design-tips-for-better-indoor-environmental-quality

  33. The impact of green building certifications on market value and occupant satisfaction, accessed May 28, 2025, https://www.researchgate.net/publication/383609782_The_impact_of_green_building_certifications_on_market_value_and_occupant_satisfaction

  34. Marfa, TX Air Quality Index - AccuWeather, accessed May 28, 2025, https://www.accuweather.com/en/us/marfa/79843/air-quality-index/335839

  35. Indoor Air Quality Guide - ASHRAE, accessed May 28, 2025, https://www.ashrae.org/technical-resources/bookstore/indoor-air-quality-guide

  36. Indoor Air Quality Resources - ASHRAE, accessed May 28, 2025, https://www.ashrae.org/technical-resources/bookstore/indoor-air-quality-resources

  37. Whole House ERVs/HRVs - Vents US Shop, accessed May 28, 2025, https://shop.vents-us.com/collections/whole-home-ervs-hrvs

  38. ERV Archives - Page 2 of 2 - Positive Energy Conservation Products, accessed May 28, 2025, https://www.positive-energy.com/product-tag/erv/page/2/

  39. Standards 62.1 & 62.2 - ASHRAE, accessed May 28, 2025, https://www.ashrae.org/technical-resources/bookstore/standards-62-1-62-2

  40. Team - Positive Energy, accessed May 28, 2025, https://positiveenergy.pro/team

  41. Texas' First Radiant Cooling & Heating System (That We Know Of) - Positive Energy, accessed May 28, 2025, https://positiveenergy.pro/building-science-blog/2017/4/24/texas-first-radiant-cooling-heating-system

  42. Kristof Irwin - Facades+, Premier Conference on High-Performance Building Enclosures., accessed May 28, 2025, https://facadesplus.com/person/kristof-irwin/

  43. Marfa Eyed for Massive AI Data Center - Industry Insider, accessed May 28, 2025, https://insider.govtech.com/texas/news/marfa-eyed-for-massive-ai-data-center

  44. AI data center could be coming to Marfa - The Big Bend Sentinel, accessed May 28, 2025, https://bigbendsentinel.com/2025/04/16/ai-data-center-could-be-coming-to-marfa/

  45. An abandoned oil well springs back to life, throwing one West Texas rancher into a battle over her land's future, accessed May 28, 2025, https://www.texasstandard.org/stories/an-abandoned-oil-well-springs-back-to-life-throwing-one-west-texas-rancher-into-a-battle-over-her-lands-future/

  46. Double Take - Texas Architect Magazine, accessed May 28, 2025, https://magazine.texasarchitects.org/2022/11/07/double-take/

  47. Brock Environmental Center, Virginia Beach | Peregrine nation, accessed May 28, 2025, https://peregrine-nation.com/2015/12/05/brock-environmental-center-virginia-beach/

  48. Participate - School of Constructive Arts, accessed May 28, 2025, https://constructivearts.org/Participate

W oodhead Publishing Limited - ePUC, accessed May 28, 2025, https://epuc.vermont.gov/?q=downloadfile/707696/189355

Architectural Design, Building Enclosure, Building Science, Environmental Design, Healthy Home, High Performance Homes, HVAC, Indoor Air Quality, Mechanical Design, Natural Building Material, VentilationPositive EnergyMarfa Ranch architecture, applied building science, Chihuahuan Desert environment, Lake Flato Architects, residential project design, courtyard layout, regional architectural traditions, low profile design, Bob Harris (Lake Flato), spareness of design, Texas Society of Architects Design Award, Dezeen Top 10 Houses of 2022, climate-responsive architecture, vernacular architecture, thermal mass, passive cooling, rammed earth walls, modern building science, MEP engineering, building envelope consultants, Positive Energy (MEP firm), human-centered design, healthy spaces, comfortable spaces, resilient spaces, building envelope, MEP systems, integrated design approach, thermal mass definition, specific heat capacity, diurnal temperature ranges, thermal lag, R-value, moisture resilience, Portland cement stabilization, compressive strength, longevity of rammed earth, hydrophobic additives, drainage, slab edge, moisture management, thermal conductivity, moisture content, hygric buffering, density of rammed earth, thermal lag hours, compressive strength of rammed earth, lifespan of rammed earth, R-value of insulated rammed earth, rammed earth wall performance attributes, air barrier, air pressure differences, energy loss prevention, moisture issues prevention, interstitial condensation, indoor air quality, controlled ventilation, mechanical ventilation, Energy Recovery Ventilators (ERVs), Indoor Air Quality (IAQ) definition, IAQ impacts on health, IAQ pollutants (particulate matter, VOCs, combustion byproducts), ASHRAE standards, green-certified buildings, cognitive function, passive building strategies, ventilation strategies, filtration strategies, humidity control strategies, source control strategies, MERV rating, whole-house fresh air systems, local exhaust systems, humidity range, low-VOC materials, combustion safety, holistic MEP design, hydronic heating system, VRF heating/cooling system, resilient design, sustainable water management, water scarcity, groundwater contamination, water conservation, greywater capture, onsite water storage, adaptive reuse (water tank to pool), rainwater collection, building science principles, durable wall assemblies, Energy Recovery Ventilators (ERVs) for IAQ, early collaboration between architects and engineers, healthier buildings, resilient buildings, positive Energy's mission, Kristof Irwin