The Theresa Passive House: A Blueprint for High-Performance Design in Hot-Humid Climates
by Positive Energy staff. Photography by Casey Dunn
Redefining Residential Performance
A Historic Blend with Cutting-Edge Sustainability
The Theresa Passive House, nestled in Austin's historic Clarksville neighborhood, stands as a remarkable example of how architectural preservation can harmoniously merge with modern sustainable design. This 2100 square foot residence, completed in 2020, is not merely a renovation and addition to a 1914 Craftsman bungalow; it is a meticulously engineered dwelling that embodies rigorous targets in energy efficiency, indoor air quality (IAQ), thermal comfort, embodied carbon, and responsible materials sourcing.[1] These ambitious goals were established by the Passive House Institute U.S. (Phius), a leading authority in high-performance building standards.
The project achieved full Passive House certification and served as a pilot for the groundbreaking PHIUS 2018+ Source Zero standard.[1] This distinction is particularly significant as it marks the Theresa Passive House as one of the first PHIUS-certified, source-zero projects in a challenging hot and humid climate, specifically ASHRAE Climate Zone 2A.[1] The commitment to these principles has yielded exceptional energy performance, with the home consuming approximately 75% less energy than typical new constructions.[1] This impressive efficiency also earned it the highest rating by Austin Energy Green Building to date.[1] Beyond its reduced energy consumption, the Theresa Passive House functions as its own energy hub, integrating photovoltaic panels and battery backup systems. This provides unparalleled self-sufficiency and resilience, ensuring peace of mind even during extreme weather events and power outages.[1]
Forge Craft, Hugh Jefferson Randolph, and the Pursuit of Passive House Excellence
The creation of the Theresa Passive House was a deeply collaborative endeavor, bringing together the expertise of Forge Craft Architecture + Design (led by Trey Farmer, AIA), Hugh Jefferson Randolph Architects, and Studio Ferme (with Adrienne Farmer contributing to interior design).[1] The homeowners themselves, an architect and a designer, envisioned the house as more than just a personal residence. They conceived it as a "forum for learning" and a tangible "proof point" for the feasibility and benefits of Passive House construction in challenging contexts, such as a modest-sized renovation on a small, urban lot within a hot, humid climate.[1]
This deliberate approach to the project, viewing it as a public demonstration, highlights a critical trend in high-performance building: successful outcomes in challenging climates necessitate a truly integrated design process. Architects, engineers, and specialized consultants must work synergistically from the very inception of a project, rather than operating in isolation. The "proof point" aspect of the Theresa Passive House suggests a broader objective of normalizing Passive House principles in the Southern United States, actively addressing and overcoming perceived barriers like cost and climate suitability through demonstrated success. The design team's commitment to health and sustainability was evident in their financial prioritization; rather than maximizing square footage, they strategically invested in a robust building envelope, a high-performance HVAC system, and on-site solar panels.[2]
Positive Energy's Role as MEP Engineer
Positive Energy, an MEP (Mechanical, Electrical, and Plumbing) engineering firm renowned for its specialization in high-end residential architecture, was a proud partner on this project.[1] Positive Energy's fundamental mission—to transform the way homes are delivered to society by leveraging building science and human-centered design—aligns deeply with core tenets of the Passive House standard.[6] Our expertise is dedicated to engineering spaces that are not only healthy and comfortable but also inherently resilient.
For the Theresa Passive House, Positive Energy's scope of involvement was comprehensive MEP engineering.[1] This deep engagement was instrumental in ensuring the precise integration and optimal performance of the advanced mechanical systems. In a hot and humid climate like Austin, where managing moisture and achieving efficient cooling are paramount, the specialized knowledge and meticulous execution provided by an experienced MEP firm are indispensable for reaching Passive House performance benchmarks. Their involvement from design through construction ensured that the ambitious performance targets were not just theoretical but were realized in the built environment.
Passive House Goes Beyond Energy Savings
The Core Principles of Passive House
Passive House represents a building design standard rooted in extreme energy efficiency and sustainable living, engineered to slash energy consumption by up to 90% compared to conventional structures.[8] It offers a direct pathway to achieving net-zero energy buildings that are also significantly more comfortable, durable, healthy, and predictable in their performance.[10] Originating in Germany in the 1990s, the Passive House concept has undergone substantial evolution, particularly with the Passive House Institute U.S. (Phius) developing climate-specific standards, such as PHIUS+ 2015 and 2018.[3] This adaptation was crucial to make the standard practically feasible across the diverse climates of North America, including the challenging hot and humid regions like Austin.
The PHIUS standard operates on a performance-based framework, underpinned by three primary pillars: stringent limits on annual and peak heating and cooling loads, a cap on overall source energy use, and demanding airtightness requirements.[11] Compliance with these criteria is rigorously verified through energy modeling, ensuring that design intent translates into real-world performance.[12]
Continuous Insulation: Eliminating Thermal Bridges
The principle of continuous insulation dictates that a building must be completely wrapped with insulation to minimize heat flow through its entire envelope.[10] This strategy directly addresses thermal bridging, which occurs where structural elements, such as framing members, possess lower R-values than the surrounding insulation. These interruptions create pathways that allow heat to escape in cold conditions or penetrate in warm conditions, undermining the overall thermal performance of the enclosure. The application of continuous, thick insulation on the exterior of a building is fundamental to maintaining stable indoor temperatures and significantly reducing energy demand.[10]Airtight Construction: The Foundation of Performance
Passive Houses are meticulously designed for extreme airtightness, typically targeting 0.6 air changes per hour at 50 Pascals (ACH@50 Pa) or less.[10] This stringent requirement aims to prevent uncontrolled air leakage, which is a significant vector for both heat and moisture transfer. Air leaks can account for up to 40% of total heat loss even in otherwise well-insulated structures.[15] More critically, in hot-humid climates, warm, moist outdoor air leaking into cooler interior wall cavities can condense, leading to moisture accumulation, potential mold growth, and long-term durability issues within the building fabric itself.[10] Airtightness is empirically verified through a Blower Door Test, a diagnostic tool that measures the rate of air changes per hour under a controlled pressure difference.[14]High-Performance Windows: Balancing Solar Gain and Heat Loss
Windows are inherently complex components of the building envelope, tasked with managing air, water, and heat flow while also providing views and daylight.[10] Passive Houses typically employ triple-glazing and specialized low-emissivity (low-e) coatings to effectively block radiant heat transfer.[10] In a hot climate, the Solar Heat Gain Coefficient (SHGC) of windows is particularly crucial. Windows with a high SHGC are desirable on facades where passive solar heating is beneficial in winter (e.g., east and south orientations), while those with a low SHGC are essential on facades exposed to intense summer sun (e.g., west-facing windows) to prevent unwanted solar heat gain and subsequent overheating.[10]Balanced Ventilation with Heat/Energy Recovery
Given the exceptional airtightness of Passive Houses, controlled mechanical ventilation becomes indispensable to ensure a continuous supply of fresh air and to effectively manage indoor air quality.[10] Energy Recovery Ventilators (ERVs) are commonly employed for this purpose. These systems continuously pull in fresh outdoor air and exhaust stale indoor air, simultaneously transferring heat and moisture between the two airstreams.[10] This process minimizes energy loss while managing latent loads, ensuring a constant flow of fresh, filtered air without compromising the building's thermal comfort or energy efficiency.Dedicated Dehumidification
Relying on the heating/cooling system alone is insufficient to create the necessary drying potential in a building, especially when an air tight envelope and ERV create both interior and exterior latent loads that need to be handled by mechanical means. Dedicated dehumidifiers are critical to decouple the drying function from the heating and cooling systems.Right-Sizing Mechanical Systems for Efficiency
One of the significant advantages of a highly insulated and airtight Passive House envelope is the drastic reduction in heating and cooling loads, which eliminates the need for oversized HVAC systems.[10] This allows for the specification of smaller, less expensive, and inherently more efficient mechanical systems. The upfront investment in a robust building envelope can be partially offset by the savings realized from reduced mechanical equipment costs.[10] The focus shifts to precisely right-sizing and selecting systems that can efficiently handle the minimal and precise loads of the building.
Why Passive House Matters
The benefits of Passive House design extend far beyond mere energy savings, encompassing a holistic improvement in the living environment.
Comfort: Passive Houses are engineered to maintain a remarkably stable indoor temperature, eliminating drafts and cold spots that often plague conventional buildings and ensuring superior thermal comfort for occupants.[2]
Health: The meticulous control over indoor air quality, achieved through continuous mechanical ventilation and advanced filtration, significantly reduces the presence of indoor pollutants and allergens. This proactive management minimizes the risk of respiratory problems and contributes to a healthier living environment.[2]
Durability: The emphasis on high-quality building materials and exacting construction practices, particularly concerning moisture control within the building envelope, contributes to structures that are inherently more durable and capable of withstanding extreme weather conditions over their lifespan.[8]
Resilience: Perhaps one of the most compelling advantages in an era of increasing climate volatility is the inherent resilience of Passive House design. The robust building envelope and energy-efficient systems provide "passive survivability," allowing homes to maintain habitable temperatures for extended periods even during power outages or severe weather events.[1] The Theresa Passive House notably demonstrated this capability during both the extreme cold of Winter Storm Uri and intense summer heat events, as validated by research from the University of Texas.[3]
The evolution of the Passive House standard from its European origins, which primarily focused on heating loads, to the climate-specific PHIUS+ 2015 and 2018 standards for North America, represents a strategic adaptation crucial for broader market penetration. This adaptation acknowledges the unique challenges presented by diverse climates, particularly the significant cooling and dehumidification demands of hot and humid regions like Austin.[3] Without this climate-specific optimization, the standard's applicability in many parts of the United States would be severely limited. The Theresa Passive House's designation as a pilot project for PHIUS 2018+ Source Zero in a hot, humid climate underscores the importance of this ongoing evolution, positioning PHIUS as a leader in making passive building principles effective and accessible across varied environmental contexts.[1]
The relationship among the five Passive House principles is a cornerstone of their effectiveness. For instance, the extreme airtightness achieved in a Passive House fundamentally changes how the building interacts with its environment. This virtual elimination of uncontrolled air infiltration, a major pathway for heat, moisture, and pollutants, then mandates the integration of sophisticated mechanical ventilation systems to introduce fresh air and manage humidity.[10] Conversely, the superior performance of the envelope—through continuous insulation, high-performance windows, and airtight construction—allows for significantly downsized and optimized MEP systems, leading to both cost savings and increased efficiency. This highlights that envelope and mechanical systems are not independent elements but rather an interdependent entity, requiring an integrated design approach for optimal performance.
Key Performance Metrics of Theresa Passive House (vs. Typical Code-Built)
The following table provides a quantitative overview of the Theresa Passive House's performance, contrasting it with typical code-built homes to illustrate the tangible advantages of Passive House design. These metrics demonstrate the practical application of building science principles and the level of performance achievable in real-world projects.
Passive House Principles and Their Practical Application
The following table illustrates how the core principles of Passive House are translated into tangible design and construction elements, using the Theresa Passive House as a concrete example. This breakdown aims to demystify complex concepts by showing their real-world implementation and benefits.
Walls and Roofs in a Hot-Humid Climate
Understanding Wall Assemblies: The Four Control Layers in Practice
Designing a durable and high-performing building enclosure, especially in challenging climates, requires a nuanced understanding of how its various components interact with environmental loads such as rain, temperature, and humidity. Building science principles emphasize the importance of four principal control layers within a wall assembly, each addressing a critical function for long-term durability and performance.[17] These layers, listed in their order of importance for preventing building failure, are:
Water Control Layer: This is the primary defense against liquid water—whether from rain, surface water, or groundwater—from entering the building.[18] Its continuous and robust application is paramount, as a failure in this layer can lead to rapid and catastrophic system failure, including mold, decay, and corrosion.
Air Control Layer: This layer prevents uncontrolled air movement through the building envelope.[22] Air leakage is not merely an energy drain; it carries significant heat and, critically, moisture. In hot-humid climates, warm, humid outdoor air infiltrating cooler interior wall cavities can condense, leading to moisture accumulation, reduced effective R-value of insulation, and potential mold or decay.[10] A continuous, strong, and durable air barrier is essential to mitigate these risks.[18]
Thermal Control Layer: This is the insulation, designed to minimize heat transfer through conduction.[22] While often the most visible component of a high-performance wall, its effectiveness is severely compromised if the air and moisture control layers are not adequately addressed and integrated.[10]
Vapor Control Layer: This layer manages the movement of moisture vapor through building materials via diffusion.[22] Its precise placement and permeability are highly dependent on the specific climate zone and interior conditions. In hot-humid climates, the strategy often involves allowing for "inward drying" or utilizing semi-vapor permeable materials on the exterior to prevent moisture from becoming trapped and accumulating within the assembly.[22]
Theresa Passive House Wall and Roof Design: Strategies for Austin's Climate
Austin, Texas, is classified as ASHRAE Climate Zone 2A – Hot-Humid.[4] This climate presents distinct challenges for building enclosures, primarily characterized by high humidity levels and substantial cooling loads, alongside the potential for inward moisture drive caused by solar heating of exterior surfaces.[10] The Theresa Passive House's envelope design directly addresses these challenges through thoughtful material selection and assembly configuration.
Specific R-Values and Insulation Types: The Theresa Passive House is constructed with a wood frame system.[4] Its walls are designed as framing with continuous insulation, achieving an R-value of 26 and utilizing mineral wool with cavity fill as the insulation material.[4] This approach of combining cavity insulation with continuous exterior insulation is crucial for minimizing thermal bridging and achieving robust thermal performance. The roof is an unvented assembly with an R-value of 33.[4] Unvented roofs are frequently favored in hot-humid climates because they offer superior control over interior moisture and effectively prevent solar-driven moisture from entering the roof deck.[24] The floor sits above a crawlspace and is insulated to an R-value of 14.[4] For fenestration, Marvin windows were selected, featuring a Whole Window U-Value of 0.17 and a Solar Heat Gain Coefficient (SHGC) of 0.26.[4] This low SHGC is particularly vital for mitigating unwanted solar heat gain in a climate dominated by cooling needs.[10]
The Blower Door Test and Its Significance
A hallmark of the Theresa Passive House's performance is its extraordinary airtightness, measured at 0.036 ACH@50 Pa.[4] This figure is remarkably lower, indicating a far more airtight enclosure, than the PHIUS certification requirement of 0.6 ACH@50 Pa.[12] The Blower Door Test, a crucial diagnostic tool, quantifies the airflow between the interior and exterior of a structure, pinpointing areas of air leakage.[15] The test creates a controlled pressure difference, typically 50 Pascals, to simulate wind conditions, and then measures the resulting air changes per hour.[15] This extreme level of airtightness is a fundamental cornerstone of Passive House design, as it prevents significant energy loss and uncontrolled moisture movement. However, it simultaneously necessitates the integration of controlled mechanical ventilation to ensure a continuous supply of fresh air.[10] The extremely low ACH@50 achieved by the Theresa Passive House powerfully demonstrates that airtightness is not merely an energy-saving measure but a foundational prerequisite for creating a truly controlled indoor environment. For architects, this means recognizing that embracing airtightness as a design priority shifts the responsibility for air exchange from random leaks to precisely engineered mechanical systems, enabling superior indoor air quality and humidity control.Moisture Management in Unvented Roofs with Asphalt Shingles
In hot-humid climates, unvented roof assemblies, particularly those utilizing asphalt shingles, demand a specific and critical moisture management strategy: the installation of a vapor barrier between the asphalt shingles and the roof deck.[24] This is due to the nature of asphalt shingles, which, similar to traditional wood shingles, can act as a reservoir for water from dew and rain.[24] When these shingles are heated by solar radiation, the stored moisture can be driven inward through permeable roofing felts into the underlying roof deck (typically plywood or OSB), potentially leading to moisture accumulation and material degradation such as buckling.[24] The solution involves using an impermeable roofing underlayment, which functions as a vapor barrier. This layer effectively prevents this inward moisture drive, thereby controlling moisture transmission through the roof assembly and eliminating shingle buckling and moisture issues within the roof deck.[24] This detail is paramount for ensuring the long-term durability of the roof in hot, humid environments and maintaining the integrity of the roof deck.[25]
Practical Takeaways for Durable Wall Assemblies
For architects, a deep understanding of the climate-specific behavior of wall assemblies is paramount. In hot-humid climates, the primary focus shifts from preventing outward moisture drive (as is common in cold climates) to meticulously managing inward moisture drive and preventing condensation within the assembly, which occurs when humid outdoor air encounters cooler interior surfaces.[10] The Theresa Passive House serves as a compelling demonstration that robust thermal control, exemplified by its R-26 walls and R-33 roof [4], combined with exceptional air control (0.036 ACH@50 Pa [4]) and precise vapor control (such as the specific vapor barrier in its unvented roof [24]), is not only achievable but essential for ensuring both durability and high performance in such challenging climates.
The selection of materials like mineral wool for the walls and the specific unvented roof assembly reflects a sophisticated understanding of hygrothermal performance in Austin's climate. The design prioritizes assemblies that can effectively "dry" in the appropriate direction, preventing moisture accumulation within the building fabric.[4] This approach aligns with the "perfect wall" concept, which, in hot-humid climates, often implies placing the primary thermal and vapor control layers on the exterior side of the structure. This strategy helps keep the sheathing warm and minimizes the risk of condensation, or it effectively manages inward vapor drive. This illustrates that achieving high performance while maintaining durability in a challenging climate requires that "more insulation" be accompanied by "smarter assembly design."
Theresa Passive House Envelope Specifications
The following table provides a detailed overview of the Theresa Passive House's key envelope specifications, offering concrete examples of the components and performance metrics that contribute to its high-performance status in a hot-humid climate.
Positive Energy's MEP Solutions
The Imperative of Indoor Air Quality in Airtight Homes
In highly airtight Passive Houses, the focus on indoor air quality (IAQ) becomes paramount. Because natural infiltration, or uncontrolled air leakage, is virtually eliminated, pollutants can accumulate within the living space if not properly managed through mechanical means.[21]
Common indoor pollutants and their sources are diverse and pervasive in residential settings. These include combustion products from unvented stoves, furnaces, or tobacco; off-gassing from building materials like insulation, wet carpet, or pressed wood products; chemicals from furnishings and household cleaning products; and emissions from human activities such as cooking and cleaning.[21] These sources can introduce a range of contaminants, including carbon dioxide (CO2), Volatile Organic Compounds (VOCs), and fine particulate matter (PM2.5).[21]
To define and ensure "acceptable indoor air quality," the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) developed Standard 62.2, "Ventilation and Acceptable Indoor Air Quality in Residential Buildings".[27] This standard serves as the recognized benchmark for residential ventilation design, specifying minimum ventilation rates and other measures to minimize adverse health effects for occupants.27 ASHRAE 62.2 defines "Whole Building" Mechanical Ventilation using the formula: Q fan = 0.03A floor + 7.5 (BR + 1).[26] In this equation, A floor represents the conditioned floor area, serving as a proxy for material sources that might off-gas pollutants, while BR (Bedrooms) acts as a surrogate for the number of occupants and their activities. The standard also provides "Source Control" Exhaust Ventilation requirements for specific areas. For instance, kitchens require 100 cfm (cubic feet per minute) of on-demand ventilation or 5 ACH (air changes per hour) continuously, while full bathrooms require 50 cfm on-demand or 20 cfm continuously.[26] The development of ASHRAE 62.2 was instrumental in overcoming initial builder resistance to constructing airtight homes by providing a clear and accepted method for ensuring proper IAQ.[27]
Theresa Passive House's Integrated MEP System
Positive Energy's MEP engineering for the Theresa Passive House exemplifies a highly sophisticated and integrated approach to environmental control. This level of integration is particularly critical for a building that is not only located in a hot and humid climate but also boasts an exceptionally airtight envelope.[1] The comprehensive system is aptly described as the "workhorse" that enables much of the Theresa Passive House's performance.3
Variable Refrigerant Flow (VRF) Heat Pump AC: Efficient Heating and Cooling
The Theresa Passive House employs a Mitsubishi Variable Refrigerant Flow (VRF) heat pump AC unit for its primary heating and cooling needs.[3] VRF systems are highly advantageous in high-performance homes because their variable capacity allows them to precisely match the significantly reduced heating and cooling loads. Unlike oversized conventional units that cycle frequently and inefficiently, VRF systems can operate for longer durations at lower capacities, which is crucial for effective latent heat (moisture) removal.[19] This precise control enhances both energy efficiency and occupant comfort.Energy Recovery Ventilation (ERV): Delivering Fresh Air and Managing Latent Loads
A Panasonic Intellibalance 1000 ERV system is integral to delivering continuous fresh air throughout the Theresa Passive House.[3] The fundamental function of an ERV is to exchange both sensible heat and latent heat (moisture) between the incoming fresh outdoor air and the outgoing stale indoor air.[10] In a hot, humid climate, this is particularly vital: the ERV transfers moisture from the wetter incoming outdoor air to the drier exhaust air, thereby significantly reducing the latent load that the cooling system would otherwise have to handle.[19] This mechanism is crucial for maintaining excellent indoor air quality in an airtight home by continuously flushing out pollutants while simultaneously minimizing the energy penalty associated with conditioning untreated outdoor air.[10]Dedicated Dehumidification: The Key to Comfort in Humidity
Complementing the VRF and ERV systems, the Theresa Passive House incorporates a dedicated dehumidifier.[3] Even with an efficient VRF system and an ERV managing the latent load from ventilation air, a dedicated dehumidifier is often indispensable in hot, humid climates like Austin. This component allows for precise control of indoor humidity levels without the need to overcool the space to achieve dehumidification.[19] While ERVs are effective at reducing the moisture burden from incoming ventilation air, they do not fully dehumidify the entire indoor air volume.[19] The dedicated dehumidifier ensures optimal thermal comfort by maintaining desired humidity levels (typically 50-55% Relative Humidity), which is critical for occupant well-being and preventing potential mold growth within the building.[20] This focus on latent load management is a critical consideration in hot-humid climates, as a standard AC system alone is often insufficient for optimal comfort and durability in a high-performance, airtight home. A dedicated strategy for latent load management, typically involving an ERV for ventilation air and a separate dehumidifier for internal moisture, is not merely a luxury but a fundamental requirement for preventing mold, ensuring comfort, and protecting the building fabric.Hospital-Grade Air Filtration: Ensuring Clean Air (MERV Ratings Explained)
The Theresa Passive House integrates a MERV16 filtration system [3], a commitment to indoor air quality beyond typical residential standards. Air filter effectiveness is quantified by its MERV (Minimum Efficiency Reporting Value) rating, which measures a filter's ability to trap particles ranging from 0.3 to 10 microns in size.32 Higher MERV ratings indicate superior filtration capabilities.[32]
MERV 1-4: Offer minimal filtration, capturing larger particles like dust and pollen.[32]
MERV 5-8: Common in residential and commercial settings, capable of capturing mold spores, dust mites, and household lint.[32]
MERV 9-12: Provide improved IAQ, trapping finer dust, pet dander, some bacteria, and mold spores. Filters in this range are often used in hospitals, although not in surgical settings.[32]
MERV 13-16: Recommended for environments demanding high air quality, capable of capturing particles as small as 0.3 microns, including bacteria, viruses, smoke, and smog. These are frequently used in commercial buildings, hospitals, and clean rooms.[32]
MERV 17-20 (HEPA): Represent the highest level of filtration, typically used in specialized settings like surgical rooms and cleanrooms, capable of removing 99.97% of 0.3-micron particles, including viruses and combustion smoke. These are generally not suitable for standard residential HVAC systems due to significant airflow restriction, [32] but do provide superior protection against a wide spectrum of airborne contaminants, including allergens, pollutants, and even some viruses and bacteria.[32] This level of filtration offers substantial benefits, particularly in regions with high allergen counts or during public health concerns.[3] This commitment to high-level filtration signifies a growing trend where high-performance homes are not merely about energy efficiency but also about creating inherently healthier indoor environments. In airtight homes, filtration becomes the primary defense mechanism against both outdoor and indoor airborne contaminants.
Heat Pump Hot Water Heater: Energy-Efficient Domestic Hot Water
The MEP system further includes a heat pump hot water heater.[3] Heat pump water heaters are considerably more energy-efficient than traditional electric resistance models, contributing significantly to the overall low energy consumption profile of the Passive House.[14]
How Positive Energy Ensures Optimal Performance
Positive Energy's approach to the Theresa Passive House demonstrates how individual MEP components are meticulously integrated to function as a cohesive, high-performing system. The extreme airtightness of the Passive House envelope, measured at an impressive 0.036 ACH@50 Pa [4], allows the mechanical systems to operate with unparalleled precision, as uncontrolled air leakage, which would otherwise introduce unpredictable loads, is virtually eliminated.[10]
The combination of a VRF system, an ERV, and a dedicated dehumidifier represents a highly targeted strategy for hot-humid climates. This trifecta effectively addresses both sensible (temperature) and latent (humidity) loads.[19] The ERV efficiently handles the latent load introduced by incoming fresh air, while the dedicated dehumidifier precisely manages internal latent loads, preventing the AC system from overcooling the space in an attempt to remove excess moisture.[19]
A critical aspect of Positive Energy's involvement was collaboration with the means/methods team during construction to ensure design intent was met.[3] This process is essential to verify that all complex systems are installed correctly, calibrated precisely, and operate as designed to achieve the rigorous Passive House performance targets.[21] Construction phase collaboration ensures that the theoretical design performance translates into real-world operational excellence, maximizing the comfort, health, and efficiency benefits for the occupants.
Indoor Air Quality Parameters and ASHRAE 62.2 Requirements
For architects seeking to understand the intricacies of indoor air quality, the following table outlines key parameters, their significance, health implications, and how ASHRAE 62.2 provides a framework for achieving acceptable indoor air quality.
Theresa Passive House MEP System Components and Functions
This table details the specific MEP system components engineered by Positive Energy for the Theresa Passive House, highlighting their functions and benefits within the context of a high-performance home in a hot-humid climate.
Lessons from the Theresa Passive House
Passive Survivability: Performance During Extreme Weather Events
The Theresa Passive House stands as a powerful demonstration of climate resilience, a core benefit of Passive House design that extends beyond daily energy savings.[1] Its performance during extreme weather events provides compelling evidence of its robust design.
During the unprecedented Winter Storm Uri, which brought single-digit temperatures to Austin and caused widespread power outages and burst pipes in many conventional homes, the Theresa Passive House maintained an indoor temperature of approximately 47 degrees Fahrenheit after three days without power.[3] This remarkable passive survivability demonstrates a significant "cushion of time" for occupants, ensuring safety and comfort even when the grid fails.[3]
Similarly, researchers at the University of Texas (UT Austin) conducted studies on the home's ability to tolerate extreme heat, comparing its performance to a code-built house. After 12 hours on a sweltering summer day, the code-built house reached a stifling 98 degrees Fahrenheit, while the Passive House registered a much more comfortable 83 degrees.[1] This highlights the effectiveness of its robust envelope and design strategies in mitigating heat gain, even without active cooling. This performance during both extreme cold and heat showcases that high-performance homes are not just energy-efficient but also robust climate adaptation tools, shifting the value proposition from purely operational cost savings to essential safety and quality of life benefits in an era of increasing climate volatility. Further enhancing its resilience, the home operates as its own energy hub, generating electricity through photovoltaic panels and utilizing battery backup to provide full backup power and self-sufficiency during grid outages.[1]
Source Zero Certification: Producing More Energy Than Consumed
A crowning achievement for the Theresa Passive House is its PHIUS 2018+ Source Zero certification.[1] This designation signifies that the building produces more energy than it consumes on an annual basis, specifically accounting for "source energy".[1] Source energy is a more comprehensive metric than site energy, as it includes all energy consumed from generation at the power plant through transmission and delivery to the building, providing a more accurate measure of environmental impact.[11]
As the only PHIUS-certified, source-zero project in the Southern United States, the Theresa Passive House sets a new benchmark for energy efficiency and serves as a pioneering model for climate action in residential construction.[1] This achievement underscores that true sustainability in building extends beyond merely reducing energy consumption. It involves actively contributing to the energy grid's decarbonization by producing clean, renewable energy. For architects, aiming for Source Zero means integrating on-site renewables, such as photovoltaic panels and battery storage, as an intrinsic part of the design, working in tandem with the super-efficient envelope and MEP systems. This elevates the goal from simply "doing less harm" to "actively doing good" for the environment and the grid, establishing a higher standard for future projects.
The Theresa Passive House as a Case Study for Future Builds and Community Education
The homeowners of the Theresa Passive House actively embraced its role as a "proof point" and a learning opportunity. They engaged extensively with the community, hosting events for product companies and welcoming students from the University of Texas at Austin to visit, openly sharing data and designs as a living case study.[1] This commitment to knowledge dissemination has been instrumental in demystifying Passive House principles and showcasing their practical application.
The impact extends beyond this single project. Trey Farmer of Forge Craft is actively applying Passive House principles to affordable multifamily housing projects, demonstrating the scalability and broader applicability of these crucial benefits to a wider range of communities.[3] The project's excellence and influence have been widely recognized, garnering numerous accolades, including the prestigious 2024 AIA Housing Award, PHIUS' Passive Project of the Year – Retrofit, and Austin Green Awards.[1] These awards underscore its significant impact and recognition within the architectural and building science industries, further cementing its status as an inspiring blueprint for future high-performance construction.
Empowering Architects for High-Performance Futures
The Theresa Passive House stands as a compelling testament to the transformative potential of high-performance building design, particularly in challenging hot and humid climates. Its success demonstrates that achieving superior energy efficiency, indoor air quality, thermal comfort, and resilience is not merely a collection of disparate technologies but an integrated science.
For architects seeking to design durable, healthy, and efficient homes, several key principles emerge from this project:
Prioritize the Building Envelope: A robust, continuous, and airtight building envelope—encompassing walls, roofs, and high-performance windows—is the fundamental prerequisite for energy efficiency, effective moisture control, and consistent thermal comfort. This demands a meticulous understanding and implementation of all four control layers: water, air, vapor, and thermal, with careful consideration of their climate-specific interactions.
Embrace Controlled Mechanical Ventilation: In highly airtight structures like Passive Houses, mechanical ventilation with energy recovery (ERV) is not optional; it is essential for maintaining superior indoor air quality and effectively managing latent loads. This controlled approach ensures a continuous supply of fresh, filtered air while preserving energy efficiency.
Right-Size and Integrate MEP Systems: The inherent efficiency of the high-performance envelope allows for significantly smaller, more efficient mechanical systems, such as Variable Refrigerant Flow (VRF) heat pumps. Furthermore, in hot and humid climates, dedicated dehumidification is crucial for achieving optimal comfort and preventing moisture-related durability issues, as it addresses latent loads precisely without overcooling.
Invest in Advanced Air Filtration: Implementing high-MERV filtration is vital for ensuring a healthy indoor environment. This protects occupants from a wide range of airborne pollutants, allergens, and even some pathogens, a benefit that has gained increasing importance in public health considerations.
Design for Resilience: Beyond the immediate benefits of energy savings, architects must consider passive survivability and active energy independence (through integrated photovoltaics and battery storage). These features are critical for ensuring occupant safety and comfort during increasingly frequent extreme weather events and power outages, making homes truly future-proof.
The profound success of the Theresa Passive House is a powerful endorsement of the value of an integrated design process. This project clearly illustrates that when architects, building science consultants, and MEP engineers collaborate from the earliest stages of conception, the full potential of high-performance design can be unlocked. Positive Energy's pivotal role as MEP Engineer and Commissioning Agent was indispensable in translating the ambitious performance targets into a functional, resilient, and healthy home. Their specialized expertise in climate-specific MEP solutions, particularly tailored for hot and humid environments, underscores the critical contribution of specialized engineering in achieving Passive House certification and pushing beyond it to Source Zero. For architects, partnering with experienced MEP engineers and building science consultants is not just about achieving compliance; it is about empowering the creation of homes that are healthier, more comfortable, more durable, and genuinely climate-resilient for their occupants, setting an inspiring blueprint for the future of residential architecture.
Works cited
Theresa Passive - Forge Craft Architecture, accessed May 28, 2025, https://forgexcraft.com/portfolio/theresa-passive/
Theresa Passive House by Forge Craft Architecture + Design ..., accessed May 28, 2025, https://architizer.com/projects/theresa-passive/
There Will Come Soft Rains - Texas Architect Magazine, accessed May 28, 2025, https://magazine.texasarchitects.org/2022/11/07/there-will-come-soft-rains/
Theresa Passive House | Phius, accessed May 28, 2025, https://www.phius.org/certified-project-database/theresa-passive-house
Theresa Passive House | The American Institute of Architects, accessed May 28, 2025, https://www.aia.org/design-excellence/award-winners/theresa-passive-house
Passive House — Positive Energy, accessed May 28, 2025, https://positiveenergy.pro/passive-house
Positive Energy | Building Science Focused MEP Engineering, accessed May 28, 2025, https://positiveenergy.pro/
MEP Design for Passive Houses: Tips and Considerations - Innodez, accessed May 28, 2025, https://innodez.com/mep-design-for-passive-houses-tips-and-considerations/
Phius Market Penetration in the US: A Comparative Analysis with Typical Code-Built Houses, accessed May 28, 2025, https://positiveenergy.pro/building-science-blog/2025/5/26/phius-market-penetration-in-the-us-a-comparative-analysis-with-typical-code-built-houses
Passive Building Design Guide - Phius, accessed May 28, 2025, https://www.phius.org/sites/default/files/2022-04/phius-commercial-construction-design-guide.pdf
Passive Building on the Rise - ASHRAE, accessed May 28, 2025, https://www.ashrae.org/technical-resources/high-performing-buildings/passive-building-on-the-rise
www.phius.org, accessed May 28, 2025, https://www.phius.org/sites/default/files/2022-04/Phius%202021%20Standard%20Setting%20Documentation%20v1.1.pdf
www.ashrae.org, accessed May 28, 2025, https://www.ashrae.org/technical-resources/high-performing-buildings/passive-building-on-the-rise#:~:text=These%20form%20the%20main%20passive,recovery%20ventilation%20(Figure%201).
BSD-025: The Passive House (Passivhaus) Standard—A comparison to other cold climate low-energy houses | buildingscience.com, accessed May 28, 2025, https://buildingscience.com/documents/insights/bsi-025-the-passivhaus-passive-house-standard
Passive House and Blower Door Test - Rothoblaas, accessed May 28, 2025, https://www.rothoblaas.com/blog/passive-house-e-blower-door-test
All About Blower Door Test Equiment and Results - Prosoco, accessed May 28, 2025, https://prosoco.com/blower-door-tests-learn-the-basics-now/
PASSIVE HOUSE WALL ASSEMBLY PERFORMANCE – A CASE STUDY - RDH Building Science, accessed May 28, 2025, https://www.rdh.com/wp-content/uploads/2017/11/CCBST-2017-Passive-House-Wall-Assembly-Performance.pdf
Moisture-Related Durability of In-Service High-R Wall Assemblies in Pacific Northwest Climates - RDH Building Science, accessed May 28, 2025, https://www.rdh.com/wp-content/uploads/2017/10/Smegal-Durability-High-R-Walls-Pacific-NW-1.pdf
HVAC, ERV, and Dehumidifier in new coastal home : r/buildingscience - Reddit, accessed May 28, 2025, https://www.reddit.com/r/buildingscience/comments/1b4r6yx/hvac_erv_and_dehumidifier_in_new_coastal_home/
Expanding Passive House ERV & HVAC Options - EkoBuilt, accessed May 28, 2025, https://ekobuilt.com/blog/expanding-passive-house-erv-hvac-options/
Indoor Air Quality in Passivhaus Dwellings: A Literature Review - PMC, accessed May 28, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC7369996/
BSI-120: Understanding Walls\* | buildingscience.com, accessed May 28, 2025, https://buildingscience.com/documents/building-science-insights-newsletters/bsi-120-understanding-walls
Moisture Control For Buildings, accessed May 28, 2025, https://buildingscience.com/sites/default/files/migrate/pdf/PA_Moisture_Control_ASHRAE_Lstiburek.pdf
buildingscience.com, accessed May 28, 2025, https://buildingscience.com/sites/default/files/document/rr-0306_unvented_roof_hh_shingle_rev.pdf
buildingscience.com, accessed May 28, 2025, https://buildingscience.com/sites/default/files/migrate/pdf/RR-0108_Unvented_Roof_Systems.pdf
The Inside Story: A Guide to Indoor Air Quality | CPSC.gov, accessed May 28, 2025, https://www.cpsc.gov/Safety-Education/Safety-Guides/Home/The-Inside-Story-A-Guide-to-Indoor-Air-Quality
www.energy.gov, accessed May 28, 2025, https://www.energy.gov/sites/prod/files/2014/12/f19/ba_innovations_2014_ASHRAE%2062_2.pdf
Standards 62.1 & 62.2 - ASHRAE, accessed May 28, 2025, https://www.ashrae.org/technical-resources/bookstore/standards-62-1-62-2
Read-Only Versions of ASHRAE Standards, accessed May 28, 2025, https://www.ashrae.org/technical-resources/standards-and-guidelines/read-only-versions-of-ashrae-standards
ASHRAE 62.2 - Air King Indoor Air Quality Standards, accessed May 28, 2025, https://www.airkinglimited.com/ashrae-62-2/
Ventilating dehumidifier vs ERV + dehumidifier for hot humid climate - GreenBuildingAdvisor, accessed May 28, 2025, https://www.greenbuildingadvisor.com/question/ventilating-dehumidifier-vs-erv-dehumidifier-for-hot-humid-climate
A Quick Guide to MERV Ratings for Better Indoor Air Quality - RectorSeal, accessed May 28, 2025, https://rectorseal.com/blog/merv-ratings-dust-free
What MERV Rating Do I Need For My Home HVAC System? - Filti, accessed May 28, 2025, https://filti.com/what-merv-rating-do-i-need/
What is a MERV rating? | US EPA, accessed May 28, 2025, https://www.epa.gov/indoor-air-quality-iaq/what-merv-rating
Choose the Air Filter That's Right for Your San Antonio Home | Aramendia Service Experts, accessed May 28, 2025, https://www.aramendia.com/blog/which-air-filter-is-right-for-you-2/