Design Around People. A Good Building Follows.

Blog

Read more about a range of building science, engineering, and architecture topics on our company blog.

Posts tagged Volatile Organic Compounds (VOCs)
A Building Science Dive into the Hill Country Wine Cave

The Hill Country Wine Cave, a distinctive architectural endeavor by Clayton Korte Architects, is intricately integrated into the natural landscape of the Texas Hill Country. This private subterranean structure is carved into the north face of a solid limestone hillside, designed to nearly vanish into its surroundings. Completed in 2020, the 1,405 square meter facility encompasses a tasting lounge, a bar, a restroom, and a dedicated wine cellar capable of storing approximately 4,000 bottles.

Read More
Wine Storage, Mechanical Design, Indoor Air Quality, HVAC, Heat Pumps, Architectural DesignPositive EnergyHill Country Wine Cave, Clayton Korte Architects, subterranean architecture, Texas Hill Country, wine cellar, tasting lounge, bar, restroom, limestone hillside, excavated tunnel, board-formed concrete portal, white oak, Douglas fir, shotcrete-lined walls, steel and wood windows, building science, thermal stability, moisture intrusion, MEP engineering, Positive Energy, high-end residential architecture, human-centered design, Kristof Irwin, heat, air, moisture flow, thermal performance, moisture control, earth's thermal buffer, subsurface temperatures, Lawrence Berkeley National Laboratory (LBNL), National Renewable Energy Laboratory (NREL), Underground Thermal Energy Storage (UTES), Aquifer Thermal Energy Storage (ATES), passive thermal control, high-efficiency mechanical systems, temperature delta, above-grade environments, temperature fluctuation, energy demand, thermal mass effect, external environmental influence, "ship in a bottle" enclosure strategy, 3D scan, waterproof environment, drainage, water entry, moisture accumulation, sweating, moisture ingress, rainwater, groundwater, air transport, vapor diffusion, Building Science Corporation (BSC), Phius, RDH, source control, dampproofing, waterproofing, control layers, Water Resistive Barrier (WRB), air barrier, vapor retarder/barrier, drainage plane/cavity, rainscreen system, continuous insulation, SEER, HSPF heat pump, Goldilocks scenario, cooling, dehumidification, ASHRAE guidelines, indoor air quality (IAQ), humidity control, Volatile Organic Compounds (VOCs), wine preservation, corks, off-gassing, ventilation, filtration, ASHRAE Standards 62.1, ASHRAE Standards 62.2, system thinking, high-performance design, collaborative design
The Theresa Passive House: A Blueprint for High-Performance Design in Hot-Humid Climates

The Theresa Passive House, nestled in Austin's historic Clarksville neighborhood, stands as a remarkable example of how architectural preservation can harmoniously merge with modern sustainable design. This 2100 square foot residence, completed in 2020, is not merely a renovation and addition to a 1914 Craftsman bungalow; it is a meticulously engineered dwelling that embodies rigorous targets in energy efficiency, indoor air quality (IAQ), thermal comfort, embodied carbon, and responsible materials sourcing.[1] These ambitious goals were established by the Passive House Institute U.S. (Phius), a leading authority in high-performance building standards.

Read More
Architectural Design, Building Enclosure, Building Science, Code, Dehumidification, Electrification, Environmental Design, Filtration, Healthy Home, Heat Pumps, High Performance Homes, HVAC, Indoor Air Quality, Mechanical Design, Passive House, Phius, Solar, VentilationPositive EnergyTheresa Passive House, high-performance design, hot-humid climates, residential performance, sustainable design, architectural preservation, energy efficiency, indoor air quality (IAQ), thermal comfort, embodied carbon, responsible materials sourcing, Passive House Institute U.S. (Phius), Phius certification, PHIUS 2018+ Source Zero, ASHRAE Climate Zone 2A, photovoltaic panels, battery backup systems, self-sufficiency, resilience, Forge Craft Architecture + Design, Hugh Jefferson Randolph Architects, Studio Ferme, integrated design process, building envelope, HVAC system, on-site solar panels, MEP (Mechanical, Electrical, Plumbing) engineering, Positive Energy, building science, human-centered design, net-zero energy buildings, heating loads, cooling loads, source energy, airtightness, energy modeling, continuous insulation, thermal bridges, air changes per hour (ACH@50 Pa), air leakage, Blower Door Test, high-performance windows, triple-glazing, low-emissivity (low-e) coatings, Solar Heat Gain Coefficient (SHGC), balanced ventilation, Energy Recovery Ventilators (ERVs), dedicated dehumidification, right-sizing mechanical systems, comfort, health, durability, passive survivability, Winter Storm Uri, University of Texas research, climate-specific standards, moisture management, key performance metrics, site energy use index (EUI), renewable energy production, wall assemblies, water control layer, air control layer, thermal control layer, vapor control layer, wood frame system, mineral wool insulation, unvented roof, Marvin windows, indoor pollutants, combustion products, Volatile Organic Compounds (VOCs), particulate matter (PM2.5), ASHRAE Standard 62.2, ventilation rates, Variable Refrigerant Flow (VRF) heat pump AC, Panasonic Intellibalance 1000 ERV, MERV filtration, heat pump hot water heater, climate resilience, extreme weather events, grid outages, source zero certification, community education, AIA Housing Award, Passive Project of the Year – Retrofit, Austin Green Awards, affordable multifamily housing, building envelope prioritization, mechanical ventilation with energy recovery (ERV) implementation, MEP systems integration, advanced air filtration, MERV ratings, active energy independence, photovoltaics, battery storage, MEP engineer collaboration, climate-specific MEP solutions, commissioning agent
Breathing Easy: The Case for a National Indoor Air Quality Code in the United States

The United States faces a significant, yet largely unregulated, public health challenge: the quality of the air inside its buildings. Americans spend approximately 90% of their time indoors , breathing air that can be two to five times, and occasionally more than 100 times, more polluted than outdoor air. Despite this reality, the nation lacks a comprehensive federal code specifically governing indoor air quality (IAQ), relying instead on a fragmented system of state regulations, voluntary guidelines, and limited occupational standards. This regulatory gap results in inconsistent protection and contributes to a silent epidemic of health problems—ranging from asthma and allergies to cardiovascular disease, cognitive impairment, and cancer—and imposes a substantial economic burden through healthcare costs and lost productivity, estimated in the tens to hundreds of billions of dollars annually.

Read More
CodePositive EnergyIndoor Air Quality (IAQ), national IAQ code, public health, building codes, regulations, ventilation, filtration, source control, pollutants, health effects, respiratory illnesses, allergies, cardiovascular disease, cognitive impairment, economic burden, healthcare costs, lost productivity, EPA recommendations, ASHRAE standards, WHO guidelines, implementation challenges, legislative action, phased implementation, research, workforce development, public-private partnerships, Clean Air Act, National Ambient Air Quality Standards (NAAQS), Model Clean Indoor Air Quality Act (MCIAA), California Title 24, Occupational Safety and Health Administration (OSHA), General Duty Clause, Particulate Matter (PM), Volatile Organic Compounds (VOCs), carbon monoxide (CO), radon, nitrogen dioxide (NO2), ozone (O3), formaldehyde, mold, biological contaminants, asthma, COPD, sick building syndrome, structural codes, fire codes, electrical codes, plumbing codes, information asymmetry, market efficiency, negative externalities, energy efficiency, MERV 13 filters, monitoring protocols, maintenance, schools, healthcare facilities, workplaces, cost-benefit analysis, financial assistance, tax incentives, utility programs, stakeholder engagement, building industry, public health advocates, labor unions, environmental organizations, consumer advocacy groups, government agencies, international models, European Union, Canada, South Korea, Japan, Singapore, air changes per hour, carbon dioxide (CO2) sensors, commissioning, verification, education, public awareness campaigns.