Design Around People. A Good Building Follows.

Blog

Read more about a range of building science, engineering, and architecture topics on our company blog.

Posts tagged humidity control
A Building Science Dive into the Hill Country Wine Cave

The Hill Country Wine Cave, a distinctive architectural endeavor by Clayton Korte Architects, is intricately integrated into the natural landscape of the Texas Hill Country. This private subterranean structure is carved into the north face of a solid limestone hillside, designed to nearly vanish into its surroundings. Completed in 2020, the 1,405 square meter facility encompasses a tasting lounge, a bar, a restroom, and a dedicated wine cellar capable of storing approximately 4,000 bottles.

Read More
Wine Storage, Mechanical Design, Indoor Air Quality, HVAC, Heat Pumps, Architectural DesignPositive EnergyHill Country Wine Cave, Clayton Korte Architects, subterranean architecture, Texas Hill Country, wine cellar, tasting lounge, bar, restroom, limestone hillside, excavated tunnel, board-formed concrete portal, white oak, Douglas fir, shotcrete-lined walls, steel and wood windows, building science, thermal stability, moisture intrusion, MEP engineering, Positive Energy, high-end residential architecture, human-centered design, Kristof Irwin, heat, air, moisture flow, thermal performance, moisture control, earth's thermal buffer, subsurface temperatures, Lawrence Berkeley National Laboratory (LBNL), National Renewable Energy Laboratory (NREL), Underground Thermal Energy Storage (UTES), Aquifer Thermal Energy Storage (ATES), passive thermal control, high-efficiency mechanical systems, temperature delta, above-grade environments, temperature fluctuation, energy demand, thermal mass effect, external environmental influence, "ship in a bottle" enclosure strategy, 3D scan, waterproof environment, drainage, water entry, moisture accumulation, sweating, moisture ingress, rainwater, groundwater, air transport, vapor diffusion, Building Science Corporation (BSC), Phius, RDH, source control, dampproofing, waterproofing, control layers, Water Resistive Barrier (WRB), air barrier, vapor retarder/barrier, drainage plane/cavity, rainscreen system, continuous insulation, SEER, HSPF heat pump, Goldilocks scenario, cooling, dehumidification, ASHRAE guidelines, indoor air quality (IAQ), humidity control, Volatile Organic Compounds (VOCs), wine preservation, corks, off-gassing, ventilation, filtration, ASHRAE Standards 62.1, ASHRAE Standards 62.2, system thinking, high-performance design, collaborative design
The 5 Principles of a Healthy Home

This blog post will present a foundational framework for architectural practice, emphasizing the profound impact of building design decisions on human health and well-being. Moving beyond conventional priorities of aesthetics and initial construction costs, which are unfortunately all too common and mundane in our modern era, this post introduces and explores "5 Principles of a Healthy Home." These principles offer a holistic approach to achieving superior indoor environmental quality (IEQ) and long-term building durability. By understanding and integrating these foundational building science concepts, architects are empowered to design spaces that actively promote the health, cognitive function, and restorative sleep of occupants, thereby elevating their role to advocates for human thriving.

Read More
Architectural Design, Building Enclosure, Building Science, Dehumidification, Filtration, Healthy Home, High Performance Homes, HVAC, Indoor Air Quality, Mechanical Design, VentilationPositive EnergyBuilding design and human health, indoor environmental quality (IEQ), principles of a healthy home, architects as advocates for human thriving, aesthetics vs. first cost in construction, indoor air quality, structural resilience, occupant well-being, human thriving, time spent indoors, invisible threats in indoor environments, particles, gas-phase pollutants, bioaerosols, physiological functions, cognitive functions, epigenetic changes, prenatal gene regulation, indoor air pollutants and gene expression, impact of air quality on cognitive abilities, decision-making, CO2 levels and cognitive performance, impact of air quality on sleep, particulate matter and nitrogen dioxide, sleep disturbances, building enclosure, moisture transport, water management, deflect, drain, dry principles, water-resistive barrier (WRB), flashing details, air barrier, insulation layer, vapor barrier, air leakage, air movement and water vapor transport, material selection and indoor air quality, toxic air pollutants, flame retardants, formaldehyde, chromated copper arsenate (CCA), lead, polyvinyl chloride (PVC), phthalates, dioxins, isocyanates, crystalline silica, air distribution system, flex duct, duct board, fluid dynamics, metal ductwork, air mixing, pollutant removal, indoor pollutants: particles, gases, particulate matter (PM), PM2.5, PM10, ultrafine particles, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), bioaerosols: bacteria, viruses, protozoa, fungal spores, archaea, dust mites, active sources of indoor pollutants, cooking, showering, indoor combustion, air fresheners, personal care products, passive emissions, plasticizers, perfluorinated chemicals (PFAS), antimicrobials, six classes of harmful chemicals, dust as a pollutant reservoir, ventilation vs. air leakage, exhausting pollutants, supplying fresh air, ASHRAE Standard 62.1, ASHRAE 62.2, local exhaust: kitchen and bathroom, range hood, CFM (cubic feet per minute), whole-building fresh air, heat recovery ventilators (HRVs), energy recovery ventilators (ERVs), humidity control, excess moisture, mold growth, dimensional instability, VOC emissions, damp environments and health impacts, respiratory issues, 40-60% RH range, energy codes and latent loads, dehumidification needs, vapor compression dehumidifiers, desiccant dehumidifiers, particulate matter filtration, MERV ratings, HEPA filters, active air cleaning technologies, ozone, mechanical filtration.
The Damp Deception: How a Well-Intentioned Code Change is Fostering Mold in New Homes

The promise of a new home often includes visions of a healthier, more energy-efficient living space. However, a subtle yet significant regulatory shift in U.S. building codes, particularly affecting hot-humid climate zones, may be inadvertently undermining this very promise. Before 2021, residential ventilation requirements were often loosely enforced; homes were typically required to have a ventilator, but the actual volume of air exchanged was not mandated to be measured. This frequently led to systems being ineffectively installed or even "sabotaged" by HVAC contractors, rendering them inoperable or improperly configured from the outset. Consequently, many homes, even in that period, did not achieve consistent fresh air exchange. Compounding this, most residential HVAC systems lacked any form of supplemental or dedicated dehumidification, a feature that building science experts have increasingly recognized as crucial, especially for high-performance homes in moisture-laden environments.

Read More
State of the Art HVAC: Five keys to flawless space conditioning.