Design Around People. A Good Building Follows.

Blog

Read more about a range of building science, engineering, and architecture topics on our company blog.

Posts tagged benzene
The Resurgence of Natural Building Materials in High-End Homes: A Building Science Perspective for Architects

The landscape of luxury residential architecture is undergoing a profound transformation, driven by an escalating demand for homes that embody both sophisticated elegance and profound environmental responsibility. This evolution is particularly evident in the growing emphasis on sustainable practices, personalization, and a deep, intrinsic connection to the natural world. By the end of this decade, it is anticipated that high-end homes will prominently feature biophilic design principles, seamlessly integrating elements such as optimized natural light, lush indoor gardens, and fluid indoor-outdoor living spaces. This is not merely a passing aesthetic trend but a fundamental redefinition of luxury, where well-being and ecological stewardship are as valued as opulence and exclusivity.

Read More
Natural Building Material, Indoor Air Quality, High Performance Homes, Healthy Home, Environmental Design, Code, Building Science, Building Enclosure, Architectural DesignPositive Energyluxury residential architecture, sustainable practices, personalization, environmental responsibility, biophilic design, natural light, indoor gardens, indoor-outdoor living spaces, United Nations Sustainable Development Goals, Paris Agreement, net-zero energy buildings, carbon footprint, eco-friendly building materials, passive design strategies, smart home technologies, personalized climate control, AI-driven systems, sustainable materials, natural building materials, renewable resources, low carbon footprints, recyclability, biodegradability, greenhouse gas emissions, construction waste, energy efficiency, insulation, thermal properties, indoor air quality (IAQ), low-VOC compositions, breathability, durability, organic aesthetic appeal, wellness strategy, building science, building envelopes, moisture management, bulk water, vapor diffusion, air-transported moisture, deflection, drainage, drying, vapor pressure, vapor permeability, dew point, hygroscopic materials, hydrophilic materials, hydrophobic materials, capillarity, hygric buffering, vapor retarders, vapor barriers, cold climates, hot and humid climates, mixed climates, thermal performance, R-value, thermal mass, heat capacity, thermal conductivity, density, specific heat capacity, thermal inertia, air movement, natural ventilation, wind-driven ventilation, stack effect, volatile organic compounds (VOCs), off-gassing, formaldehyde, benzene, toluene, earthen homes, adobe, compressed earth block (CEB), rammed earth, compressive strength, seismic considerations, reinforcement techniques, foundations, moisture barriers, wall protection, code acceptance, hemp-based materials, hempcrete, hemp batt insulation, carbon sink, hemp hurds, lime-based binder, fire resistance, char layer formation, VOC neutralization, structural frame, shear strength, Cross-Laminated Timber (CLT), engineered wood, CNC technologies, load-bearing capabilities, strength-to-weight ratio, acoustic properties, sound absorption, floating floors, charring effect, fire ratings, prefabrication, climate-specific design, structural engineers, building science consultants, skilled professionals.
Designing Healthier Homes by Eliminating Fossil Gas Appliance Emissions

Architects, as the primary designers of our built environment, hold a profoundly influential position in shaping the health and well-being of building occupants. Beyond the critical considerations of aesthetics, structural integrity, and energy performance, a deep understanding of the invisible forces at play within a building's envelope is increasingly paramount. This report aims to equip architects with the essential knowledge to proactively design for superior indoor air quality (IAQ), particularly concerning emissions from common household gas appliances. The decisions made during the design phase, from material selection to mechanical system integration, directly influence the indoor environment and, by extension, the health outcomes of those who inhabit these spaces. This effectively positions architects as critical guardians of public well-being within the built space, expanding their traditional role to encompass a vital public health responsibility.

Read More
Indoor Air Quality, HVAC, Electrification, Architectural Design, Building Enclosure, Code, Filtration, Healthy Home, High Performance Homes, VentilationPositive EnergyDesigning healthier homes, eliminating fossil gas appliance emissions, indoor environmental quality, architect's role, indoor air quality, gas appliances impact on home health, combustion byproducts, hazardous air pollutants, synthesizing scientific findings, actionable strategies for architectural practice, pollutants emitted by gas appliances, health effects, design and engineering solutions, fundamentals of indoor air quality, source control, ventilation, filtration, temperature and relative humidity levels, building as a dynamic system, geographic site, local climate, physical structure, HVAC, construction techniques, contaminant sources, occupants' activities and behaviors, air exchange pathways, mechanical ventilation systems, infiltration, air pressure differences, building envelope, "Building Tight, Ventilate Right" imperative, energy consumption, pollutant concentration, energy efficiency, ventilation strategies, indoor air pollutants exceed outdoor levels, internal pollutant sources, "concentration trap", managing and removing internal contaminants, key pollutants from gas appliances, nitrogen dioxide, carbon monoxide, particulate matter, volatile organic compounds, moisture, respiratory irritation, asthma exacerbation, infection risk, decreased lung function, fatigue, chest pain, impaired vision, headaches, dizziness, confusion, nausea, DNA damage, mortality, transmission of airborne pathogens, organ damage, allergic reactions, cancer, dampness, mold growth, electric coil burners, high-dose exposure, pulmonary edema, diffuse lung injury, bronchitis, ambient air quality standards, carboxyhemoglobin, unvented gas space heaters, gas stoves, back-drafting, angia, poor ventilation, ultrafine particles, respirable particulate matter, cooking emissions, airborne particles, pathogens, respiratory aerosols, formaldehyde, benzene, unburned natural gas leakage, environmental tobacco smoke, automobile exhaust, sensory irritation, carcinogens, moisture load, human respiration and perspiration, bathing, washing, plants, pets, appliance selection, all-electric homes, electronic ignitions, proper appliance installation and maintenance, ducted range hoods, capture efficiency, airflow requirements, multi-family homes, whole-house ventilation strategies, tighter building envelopes, backdrafting risks, make-up air systems, targeted spot exhaust, bathroom fan, high-efficiency filtration, MERV-13, infectious aerosol exposure, cost-benefit analysis, air cleaning, indoor particle concentrations, semivolatile organic compounds, monitoring and alarms, carbon monoxide alarms, advanced IAQ monitors, PM2.5 sources, collaboration with MEP engineers, certified technicians, health impacts, continuous leakage, moisture byproduct, all-electric transition, building a healthier future, works cited, RMI, ASHRAE, EPA, LBNL, ventilation and air cleaning, envelope leakage, hazardous air pollutant emissions, residential ventilation requirements.