Design Around People. A Good Building Follows.

Blog

Read more about a range of building science, engineering, and architecture topics on our company blog.

Posts tagged insulation
A Path for California Architects to Easily Achieve Title 24 and Achieve Beyond-Code Performance

California has long been at the forefront of energy efficiency in the United States compared to its 49 counterparts, with its pioneering Building Energy Efficiency Standards, commonly known as Title 24, Part 6, first adopted in 1976. These standards are not static. They undergo rigorous updates every three years, serving as a dynamic benchmark for building energy performance and a critical mechanism for reducing greenhouse gas emissions during construction and operation. This continuous evolution is a deliberate policy strategy by the California Energy Commission (CEC) to systematically integrate the latest energy-saving technologies and construction practices into the built environment.

Read More
Architectural Design, Building Enclosure, Building Science, Code, Electrification, Embodied Carbon, Heat Pumps, High Performance Homes, HVAC, Mechanical Design, Off-grid, Passive House, Phius, Solar, Wildfire, Title 24Positive EnergyTitle 24, Building Energy Efficiency Standards, California Energy Commission (CEC), net-zero buildings, decarbonization targets, 2022 Energy Code, energy reduction, building science principles, MEP (Mechanical, Electrical, and Plumbing) engineering, Title 24 compliance, beyond-code performance, Heat Pumps, Electric-Ready Requirements, Solar PV, Battery Storage, Ventilation Standards, 2025 Title 24 updates, demand flexibility, time-dependent valuation (TDV), mandatory measures, prescriptive approach, performance approach, Energy Design Ratings (EDR), EnergyPro, CBECC, EnergyPlus, climate zones, prescriptive requirements, insulation, fenestration, air sealing, moisture management, Solar Photovoltaic (PV) systems, grid-interactive homes, high-efficiency HVAC systems, smart controls, Energy Recovery Ventilators (ERVs), Heat Recovery Ventilators (HRVs), water heating, LED lighting, Phius, passive building standard, net-zero building, quality assurance, continuous insulation, thermal bridge-free design, airtightness, high-performance windows and doors, balanced ventilation, passive solar design, internal heat gains, Phius CORE, Phius ZERO, Integrated Design Process (IDP), labor and expertise gaps, permitting and regulatory hurdles, contractor resistance, building science consulting, energy modeling, MEP system design, Code Compliance, Risk Management.
The Resurgence of Natural Building Materials in High-End Homes: A Building Science Perspective for Architects

The landscape of luxury residential architecture is undergoing a profound transformation, driven by an escalating demand for homes that embody both sophisticated elegance and profound environmental responsibility. This evolution is particularly evident in the growing emphasis on sustainable practices, personalization, and a deep, intrinsic connection to the natural world. By the end of this decade, it is anticipated that high-end homes will prominently feature biophilic design principles, seamlessly integrating elements such as optimized natural light, lush indoor gardens, and fluid indoor-outdoor living spaces. This is not merely a passing aesthetic trend but a fundamental redefinition of luxury, where well-being and ecological stewardship are as valued as opulence and exclusivity.

Read More
Natural Building Material, Indoor Air Quality, High Performance Homes, Healthy Home, Environmental Design, Code, Building Science, Building Enclosure, Architectural DesignPositive Energyluxury residential architecture, sustainable practices, personalization, environmental responsibility, biophilic design, natural light, indoor gardens, indoor-outdoor living spaces, United Nations Sustainable Development Goals, Paris Agreement, net-zero energy buildings, carbon footprint, eco-friendly building materials, passive design strategies, smart home technologies, personalized climate control, AI-driven systems, sustainable materials, natural building materials, renewable resources, low carbon footprints, recyclability, biodegradability, greenhouse gas emissions, construction waste, energy efficiency, insulation, thermal properties, indoor air quality (IAQ), low-VOC compositions, breathability, durability, organic aesthetic appeal, wellness strategy, building science, building envelopes, moisture management, bulk water, vapor diffusion, air-transported moisture, deflection, drainage, drying, vapor pressure, vapor permeability, dew point, hygroscopic materials, hydrophilic materials, hydrophobic materials, capillarity, hygric buffering, vapor retarders, vapor barriers, cold climates, hot and humid climates, mixed climates, thermal performance, R-value, thermal mass, heat capacity, thermal conductivity, density, specific heat capacity, thermal inertia, air movement, natural ventilation, wind-driven ventilation, stack effect, volatile organic compounds (VOCs), off-gassing, formaldehyde, benzene, toluene, earthen homes, adobe, compressed earth block (CEB), rammed earth, compressive strength, seismic considerations, reinforcement techniques, foundations, moisture barriers, wall protection, code acceptance, hemp-based materials, hempcrete, hemp batt insulation, carbon sink, hemp hurds, lime-based binder, fire resistance, char layer formation, VOC neutralization, structural frame, shear strength, Cross-Laminated Timber (CLT), engineered wood, CNC technologies, load-bearing capabilities, strength-to-weight ratio, acoustic properties, sound absorption, floating floors, charring effect, fire ratings, prefabrication, climate-specific design, structural engineers, building science consultants, skilled professionals.
The Case for Dedicated Dehumidification In Sealed Attics

Modern building design increasingly embraces sealed attic construction as a strategy to enhance energy efficiency and improve air leakage control, particularly beneficial for the performance of HVAC ductwork. This approach, where the attic space is brought within the building's thermal and air control envelope, fundamentally alters the moisture dynamics compared to traditional vented attics. While offering significant advantages, sealed attics introduce unique moisture challenges that demand precise and active management to prevent long-term durability issues and maintain superior indoor air quality.

Read More