Design Around People. A Good Building Follows.

Blog

Read more about a range of building science, engineering, and architecture topics on our company blog.

Posts tagged natural building materials
Positive Energy's Education and Advocacy Efforts

Our comprehensive approach to MEP engineering and building science consulting is deeply rooted in a strategic vision that extends far beyond individual project delivery. Our commitment to the idea of "Healthy people, healthy planet” is unwavering. It is not just a statement, but a guiding principle that permeates our extensive education and advocacy efforts. Through the firm’s Building Science Blog and The Building Science Podcast, we aim to actively cultivate knowledge everywhere we can, demystifying complex technical concepts like indoor air quality and intricate wall assembly dynamics for architects and the broader industry. This accessible knowledge transfer empowers architects to confidently integrate advanced building science into their designs, mitigating risks and ensuring the long-term performance and durability of their projects.

Read More
Architectural Design, Building Science, Code, Electrification, Embodied Carbon, Healthy Home, High Performance Homes, Passive House, Phius, Natural Building Material, Mechanical Design, MEP2040, Indoor Air Quality, HVAC, Heat PumpsPositive EnergyPositive Energy, MEP engineering, building science, high-end residential architecture, healthy spaces, comfortable spaces, resilient spaces, human-centered design, MEP design/engineering, custom home market, mission, conditioned space, employee well-being, project partner relationships, "Healthy people, healthy planet" vision, collaboration, architects, contractors, owner representatives, lived experience of architecture, indoor space upgrade, mission-focused engineering, healthier indoor environments, electrification, fossil fuel solutions, education, advocacy, market development, high-performance buildings, AEC industry, building science blog, Building Science Podcast, technical information, continual learning, educational content, blog posts, building resilience, energy systems, building enclosures, indoor air quality, moisture dynamics, wall assemblies, ventilation strategies, sealed attics, dehumidification, roof assemblies, "ping pong water, " indoor air pollution, IAQ code, fossil gas appliance emissions, electrification of domestic hot water, hydronic systems, natural building materials, biophilic design, net-zero energy, carbon footprints, risk mitigation, podcast, Kristof Irwin, M. Walker, philosophical aspects of building science, ethics, aesthetics, systemic aspects of building science, high-energy physics, custom builder, AIA BEC, AIA COTE, human factors, integrating ethics and aesthetics, risk management in AEC, bioclimatic design, system thinking, industry transformation, technical solutions, IAQ and materials, material supply chains, philosophical society, critical thinking, speaking engagements, Architectural Paradigms and Adaptation, Building Science 2.0, Facades+, PhiusCon, Passive House, BS + Beer, battery capacity sizing, ASHRAE, AIA Austin Design Excellence Conference, Science and Storytelling, Code Change, ATX Building Performance Conference, True Sustainability and Regeneration, Healthy Buildings, Earthen Construction, Gulf Coast Green, International Builder Show, Testing Protocols, University Guest Lectures, Earthen Architecture, Systems-Thinking Lens, Cooling, Passive House in Emerging Markets, Climate Change, Building Envelope, Refrigeration Cycle, Mechanical Systems, Air as Material, Psychrometrics, Ventilation, Organization & Committee Memberships, ASHRAE TC-2.1, ASHRAE SSPC-55, ASHRAE SSPC-62.2, MEP2040, RESNET, AIA Austin's Building Enclosure Council, AIA Austin's Committee On The Environment, Phius Alliance Austin, Humid Climate Conference, Phius Alliance, BS + Beer Northwest Arkansas, Habitat for Humanity, Industry Publications, Fine Homebuilding Magazine, Journal of Light Construction, Radiant Cooling.
The Resurgence of Natural Building Materials in High-End Homes: A Building Science Perspective for Architects

The landscape of luxury residential architecture is undergoing a profound transformation, driven by an escalating demand for homes that embody both sophisticated elegance and profound environmental responsibility. This evolution is particularly evident in the growing emphasis on sustainable practices, personalization, and a deep, intrinsic connection to the natural world. By the end of this decade, it is anticipated that high-end homes will prominently feature biophilic design principles, seamlessly integrating elements such as optimized natural light, lush indoor gardens, and fluid indoor-outdoor living spaces. This is not merely a passing aesthetic trend but a fundamental redefinition of luxury, where well-being and ecological stewardship are as valued as opulence and exclusivity.

Read More
Natural Building Material, Indoor Air Quality, High Performance Homes, Healthy Home, Environmental Design, Code, Building Science, Building Enclosure, Architectural DesignPositive Energyluxury residential architecture, sustainable practices, personalization, environmental responsibility, biophilic design, natural light, indoor gardens, indoor-outdoor living spaces, United Nations Sustainable Development Goals, Paris Agreement, net-zero energy buildings, carbon footprint, eco-friendly building materials, passive design strategies, smart home technologies, personalized climate control, AI-driven systems, sustainable materials, natural building materials, renewable resources, low carbon footprints, recyclability, biodegradability, greenhouse gas emissions, construction waste, energy efficiency, insulation, thermal properties, indoor air quality (IAQ), low-VOC compositions, breathability, durability, organic aesthetic appeal, wellness strategy, building science, building envelopes, moisture management, bulk water, vapor diffusion, air-transported moisture, deflection, drainage, drying, vapor pressure, vapor permeability, dew point, hygroscopic materials, hydrophilic materials, hydrophobic materials, capillarity, hygric buffering, vapor retarders, vapor barriers, cold climates, hot and humid climates, mixed climates, thermal performance, R-value, thermal mass, heat capacity, thermal conductivity, density, specific heat capacity, thermal inertia, air movement, natural ventilation, wind-driven ventilation, stack effect, volatile organic compounds (VOCs), off-gassing, formaldehyde, benzene, toluene, earthen homes, adobe, compressed earth block (CEB), rammed earth, compressive strength, seismic considerations, reinforcement techniques, foundations, moisture barriers, wall protection, code acceptance, hemp-based materials, hempcrete, hemp batt insulation, carbon sink, hemp hurds, lime-based binder, fire resistance, char layer formation, VOC neutralization, structural frame, shear strength, Cross-Laminated Timber (CLT), engineered wood, CNC technologies, load-bearing capabilities, strength-to-weight ratio, acoustic properties, sound absorption, floating floors, charring effect, fire ratings, prefabrication, climate-specific design, structural engineers, building science consultants, skilled professionals.