Design Around People. A Good Building Follows.

Blog

Read more about a range of building science, engineering, and architecture topics on our company blog.

The Case for Dedicated Dehumidification In Sealed Attics

Modern building design increasingly embraces sealed attic construction as a strategy to enhance energy efficiency and improve air leakage control, particularly beneficial for the performance of HVAC ductwork. This approach, where the attic space is brought within the building's thermal and air control envelope, fundamentally alters the moisture dynamics compared to traditional vented attics. While offering significant advantages, sealed attics introduce unique moisture challenges that demand precise and active management to prevent long-term durability issues and maintain superior indoor air quality.

Read More
Understanding "Ping Pong Water" and Navigating Attic Moisture Dynamics in Modern Roof Assemblies

The design of residential attics has undergone a significant transformation. Conventionally, attics were vented spaces with thermal insulation placed on the attic floor, separating the unconditioned attic from the conditioned living space below. However, contemporary building practices increasingly favor unvented, or "conditioned," attics where insulation is applied directly to the underside of the roof deck.[1] This shift is driven by several factors, including the desire to bring HVAC equipment and ductwork within the building's thermal and air barrier envelope to improve system efficiency and longevity, enhance overall building airtightness for energy savings, and create potentially usable conditioned or semi-conditioned space within the attic volume.[3]

Read More
Designing Healthier Homes by Eliminating Fossil Gas Appliance Emissions

Architects, as the primary designers of our built environment, hold a profoundly influential position in shaping the health and well-being of building occupants. Beyond the critical considerations of aesthetics, structural integrity, and energy performance, a deep understanding of the invisible forces at play within a building's envelope is increasingly paramount. This report aims to equip architects with the essential knowledge to proactively design for superior indoor air quality (IAQ), particularly concerning emissions from common household gas appliances. The decisions made during the design phase, from material selection to mechanical system integration, directly influence the indoor environment and, by extension, the health outcomes of those who inhabit these spaces. This effectively positions architects as critical guardians of public well-being within the built space, expanding their traditional role to encompass a vital public health responsibility.

Read More
Indoor Air Quality, HVAC, Electrification, Architectural Design, Building Enclosure, Code, Filtration, Healthy Home, High Performance Homes, VentilationPositive EnergyDesigning healthier homes, eliminating fossil gas appliance emissions, indoor environmental quality, architect's role, indoor air quality, gas appliances impact on home health, combustion byproducts, hazardous air pollutants, synthesizing scientific findings, actionable strategies for architectural practice, pollutants emitted by gas appliances, health effects, design and engineering solutions, fundamentals of indoor air quality, source control, ventilation, filtration, temperature and relative humidity levels, building as a dynamic system, geographic site, local climate, physical structure, HVAC, construction techniques, contaminant sources, occupants' activities and behaviors, air exchange pathways, mechanical ventilation systems, infiltration, air pressure differences, building envelope, "Building Tight, Ventilate Right" imperative, energy consumption, pollutant concentration, energy efficiency, ventilation strategies, indoor air pollutants exceed outdoor levels, internal pollutant sources, "concentration trap", managing and removing internal contaminants, key pollutants from gas appliances, nitrogen dioxide, carbon monoxide, particulate matter, volatile organic compounds, moisture, respiratory irritation, asthma exacerbation, infection risk, decreased lung function, fatigue, chest pain, impaired vision, headaches, dizziness, confusion, nausea, DNA damage, mortality, transmission of airborne pathogens, organ damage, allergic reactions, cancer, dampness, mold growth, electric coil burners, high-dose exposure, pulmonary edema, diffuse lung injury, bronchitis, ambient air quality standards, carboxyhemoglobin, unvented gas space heaters, gas stoves, back-drafting, angia, poor ventilation, ultrafine particles, respirable particulate matter, cooking emissions, airborne particles, pathogens, respiratory aerosols, formaldehyde, benzene, unburned natural gas leakage, environmental tobacco smoke, automobile exhaust, sensory irritation, carcinogens, moisture load, human respiration and perspiration, bathing, washing, plants, pets, appliance selection, all-electric homes, electronic ignitions, proper appliance installation and maintenance, ducted range hoods, capture efficiency, airflow requirements, multi-family homes, whole-house ventilation strategies, tighter building envelopes, backdrafting risks, make-up air systems, targeted spot exhaust, bathroom fan, high-efficiency filtration, MERV-13, infectious aerosol exposure, cost-benefit analysis, air cleaning, indoor particle concentrations, semivolatile organic compounds, monitoring and alarms, carbon monoxide alarms, advanced IAQ monitors, PM2.5 sources, collaboration with MEP engineers, certified technicians, health impacts, continuous leakage, moisture byproduct, all-electric transition, building a healthier future, works cited, RMI, ASHRAE, EPA, LBNL, ventilation and air cleaning, envelope leakage, hazardous air pollutant emissions, residential ventilation requirements.
Navigating the HVAC Refrigerant Transition and the Promise of Hydronic Systems for Future-Ready Architecture

The global heating, ventilation, and air conditioning (HVAC) industry is undergoing a significant transformation driven by the phasedown of high-Global Warming Potential (GWP) refrigerants, primarily Hydrofluorocarbons (HFCs). This shift, mandated by international agreements like the Kigali Amendment and domestic legislation such as the U.S. American Innovation and Manufacturing (AIM) Act, presents both substantial challenges and unique opportunities for the Architecture, Engineering, and Construction (AEC) industry.

Read More
Heat Pumps, HVAC, High Performance Homes, Indoor Air Quality, Electrification, Building Enclosure, Architectural Design, CodePositive EnergyHVAC refrigerant transition, high-Global Warming Potential (GWP) refrigerants, Hydrofluorocarbons (HFCs), Kigali Amendment, U.S. American Innovation and Manufacturing (AIM) Act, supply chain disruptions, refrigerant costs, technical training, mildly flammable refrigerants, hydronic systems, air-to-water heat pumps, ground source heat pumps, water as heat transfer medium, building performance, global HVAC refrigerant landscape, Montreal Protocol, ozone-depleting substances (ODS), chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), HFC phasedown, U.S. ratification of Kigali Amendment, HFC consumption reduction, global warming mitigation, low-GWP technologies, HFC Allocation Program, Allocation Framework Rule, GWP limit of 700, R-410A systems, refrigerant leak detection, refrigerant reuse, reclaimed and recycled HFCs, leak repair, recordkeeping, reporting, labeling, automatic leak detection (ALD) systems, reclaimed HFCs for servicing, cost of compliance, A2L-class refrigerants, R-454B, R-32, refrigerant flammability, safety protocols, certified HVAC technicians, ACCA A2L training, ASHRAE Standards, UL Safety Standards, refrigerant types comparison, R-22, R-290 (Propane), R-744 (CO2), R-717 (Ammonia), AEC industry challenges, project timelines, supply chain constraints, refrigerant shortages, material scarcity, A2L safety training, regulatory compliance and enforcement, EPA regulations, state-level regulations, equipment availability and compatibility, refrigerant recovery machines, hydronic system types, radiant systems, baseboard heating, chilled beam systems, snow melt systems, AWHPs principles, AWHPs benefits, GSHPs principles, GSHPs advantages, ground loop, ground temperature stability, GSHP design considerations, GSHP energy savings, Investment Tax Credit (ITC), Inflation Reduction Act (IRA), technology neutral homes, renewable electricity sources, building envelope performance, HVAC system sizing, thermal insulation, high-performance glazing, air leakage, whole building design, commissioning, thermal performance, airtightness, passive building principles, Phius (Passive House Institute US), continuous insulation, thermal bridging, condensation prevention, super-insulation, minimal space conditioning system, moisture management, dew point temperature, latent loads, dedicated outdoor air system (DOAS), dehumidification, smart controls, material selection for radiant cooling, wall design for hydronics, floor design for hydronics, ceiling design for hydronics, building physics, heat transfer processes, moisture dynamics, indoor air quality, economic benefits of hydronic systems, operational cost reductions, energy efficiency, high-efficiency circulator, VRF system comparison, DX unit comparison, water source heat pumps, lifespan of hydronic systems, maintenance costs, environmental impact of hydronics, decarbonization, solar thermal, geothermal energy, strategic design for sustainable HVAC.
Heat Pump Water Heater Technologies: Evolution and Innovation

The residential heat pump water heater market offers a growing array of system types, each with distinct operational principles and installation considerations. Understanding these variations is crucial for architects to specify the most appropriate solution for a given project.

Read More
The Electrification of Domestic Hot Water: Heat Pump Water Heater Adoption in U.S. Residential Construction

The residential construction market in the United States is undergoing a fundamental transformation, driven by the dual imperatives of grid modernization and enhanced indoor air quality. Central to this shift is the increasing adoption of Heat Pump Water Heaters (HPWHs). These highly efficient, all-electric systems represent a critical technology for decarbonizing buildings and fostering a more resilient energy infrastructure. While current national adoption rates remain modest, market dynamics indicate a significant acceleration, propelled by robust governmental policies, escalating consumer interest in new construction, and continuous technological advancements.

Read More
Plumbing, Electrification, Heat PumpsPositive EnergyHeat Pump Water Heaters (HPWHs), U.S. Residential Construction Market, Grid Modernization, Indoor Air Quality, Decarbonization, Energy Infrastructure, Governmental Policies, Consumer Interest, Technological Advancements, Heat Transfer, Energy Savings, Combustion Byproducts, Installation Complexities, Upfront Costs, Emergency Replacements, Incentives, Workforce Development, Consumer Education, All-Electric Homes, Clean Energy Transition, Building Emissions, Heat Decarbonization, Electric Grid Transformation, Distributed Energy Resources (DERs), State-Level Policy Goals, Energy Ecosystem, Societal Shift, Architects' Role, Thermal Energy, Electric Resistance Water Heaters, Energy Bill Savings, Market Dynamics, Growth Trajectory, Market Size (USD), Compound Annual Growth Rate (CAGR), Global Market, HPWH Sales, National Adoption Rate, Consumer Preference, New Construction Integration, North America, Eco-Conscious States, Market Nuance, Housing Stock Retrofits, Manufacturers (Rheem, A. O. Smith, Bradford White, Vaughn, Nyle Systems), Sales Targets, Policy Changes, DOE Efficiency Standards, Inflation Reduction Act (IRA), Tax Credits, Rebates, Energy Savings Standards, Carbon Dioxide Emissions Reduction, Appliance Standards Program, Home Electrification and Appliance Rebate Program, ENERGY STAR Certification, Low-to-Moderate Income (LMI) Households, State and Local Programs, Utility Rebates, Time-of-Use Pricing, Economic Stimulus, Supply Chain, Job Creation, Energy Equity, Market Transformation Strategy, Grid Resilience, Public Health, Flexible Loads, Thermal Storage, Electricity Consumption Timing, Peak Electricity Demand, Grid-Interactive HPWHs, Infrastructure Investment, Grid Reliability, National Energy Security, Sustainability Goals, Demand Management Programs, Load Shifting, Renewable Energy Integration, Grid Stability, Grid Efficiency, Grid-Interactive Efficient Buildings (GEBs), Transactive Energy, Load Swings, Economic Benefits, Future-Proof Energy Infrastructure, On-Site Combustion Elimination, Toxic Combustion Exhaust Gases, Pollutants, Fire/Explosion Risk, Fossil Fuel-Burning Appliances, Carbon Monoxide (CO), Nitrogen Dioxide (NO2), Particulate Matter (PM, PM2.5), Sulfur Dioxide (SO2), Hydrocarbons (Benzene), Aldehydes, Vented Combustion Devices, Unvented Combustion Devices, Source Control, Ventilation, Indoor Air Quality Concerns, Health Benefits, Vulnerable Populations, Environmental Advantages, Reduced Carbon Footprint, Greenhouse Gas Emissions, Technology Maturation, Reliability, Sound Reduction, Installer-Friendly Features, High Upfront/Installation Costs, Retail Prices, Contractor Installations, Skilled Labor Shortage, HVAC/Plumbing Trades, COVID-19 Impact, Installer Training, Project Completion Times, Improper Installations, Workforce Gap, Post-Installation Startup Process, Diagnostic Run Times, Electric Element Behavior, Consumer Awareness, Long-Term Cost Savings, Installer/Consumer Bias, 120V Plug-In Models, Retrofit-Ready Solutions, Holistic Building Design, MEP Engineers, Building Science Consultants, Point-of-Sale Rebates, Direct-to-Contractor Incentives, Tax Credits/Rebates Communication, Licensing Pathways
Rethinking Moisture Control: The Primacy of Air Tightness Over an Outdated Fixation on Vapor Barriers in Building Envelope Design

For decades, the architecture and construction community has engaged in a persistent debate surrounding the role and necessity of vapor barriers in building envelope design. This discussion, while touching on critical aspects of moisture control, has often been characterized by an overemphasis on the ability of specific materials to resist vapor diffusion, sometimes to the detriment of addressing more significant moisture transport mechanisms. Within the building science community, however, the principles governing moisture movement are largely considered settled science. It is well-established that air leakage, rather than vapor diffusion, is the predominant pathway for moisture transport through most wall assemblies.

Read More
Living Inside Anywhere: A Comprehensive Guide to Building Envelope Control Layers for Architects

The building enclosure, comprising the walls, roof, ceiling, and floor, serves as the fundamental separator between the outdoor and indoor environments. Far from being a static element, this enclosure is in a state of constant, dynamic regulation of heat, air, and moisture flow, influencing everything from the comfort and health of occupants to the long-term durability and energy efficiency of the structure. The aspiration for any building is to achieve a "high ideal" where these performance goals are met simultaneously, ensuring a comfortable, healthy, durable, low-maintenance, and energy-efficient interior space.

Read More
Breathing Easy: The Case for a National Indoor Air Quality Code in the United States

The United States faces a significant, yet largely unregulated, public health challenge: the quality of the air inside its buildings. Americans spend approximately 90% of their time indoors , breathing air that can be two to five times, and occasionally more than 100 times, more polluted than outdoor air. Despite this reality, the nation lacks a comprehensive federal code specifically governing indoor air quality (IAQ), relying instead on a fragmented system of state regulations, voluntary guidelines, and limited occupational standards. This regulatory gap results in inconsistent protection and contributes to a silent epidemic of health problems—ranging from asthma and allergies to cardiovascular disease, cognitive impairment, and cancer—and imposes a substantial economic burden through healthcare costs and lost productivity, estimated in the tens to hundreds of billions of dollars annually.

Read More
CodePositive EnergyIndoor Air Quality (IAQ), national IAQ code, public health, building codes, regulations, ventilation, filtration, source control, pollutants, health effects, respiratory illnesses, allergies, cardiovascular disease, cognitive impairment, economic burden, healthcare costs, lost productivity, EPA recommendations, ASHRAE standards, WHO guidelines, implementation challenges, legislative action, phased implementation, research, workforce development, public-private partnerships, Clean Air Act, National Ambient Air Quality Standards (NAAQS), Model Clean Indoor Air Quality Act (MCIAA), California Title 24, Occupational Safety and Health Administration (OSHA), General Duty Clause, Particulate Matter (PM), Volatile Organic Compounds (VOCs), carbon monoxide (CO), radon, nitrogen dioxide (NO2), ozone (O3), formaldehyde, mold, biological contaminants, asthma, COPD, sick building syndrome, structural codes, fire codes, electrical codes, plumbing codes, information asymmetry, market efficiency, negative externalities, energy efficiency, MERV 13 filters, monitoring protocols, maintenance, schools, healthcare facilities, workplaces, cost-benefit analysis, financial assistance, tax incentives, utility programs, stakeholder engagement, building industry, public health advocates, labor unions, environmental organizations, consumer advocacy groups, government agencies, international models, European Union, Canada, South Korea, Japan, Singapore, air changes per hour, carbon dioxide (CO2) sensors, commissioning, verification, education, public awareness campaigns.
The Damp Deception: How a Well-Intentioned Code Change is Fostering Mold in New Homes

The promise of a new home often includes visions of a healthier, more energy-efficient living space. However, a subtle yet significant regulatory shift in U.S. building codes, particularly affecting hot-humid climate zones, may be inadvertently undermining this very promise. Before 2021, residential ventilation requirements were often loosely enforced; homes were typically required to have a ventilator, but the actual volume of air exchanged was not mandated to be measured. This frequently led to systems being ineffectively installed or even "sabotaged" by HVAC contractors, rendering them inoperable or improperly configured from the outset. Consequently, many homes, even in that period, did not achieve consistent fresh air exchange. Compounding this, most residential HVAC systems lacked any form of supplemental or dedicated dehumidification, a feature that building science experts have increasingly recognized as crucial, especially for high-performance homes in moisture-laden environments.

Read More